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Abstract—The increasing complexity of functional operations,
combined with the automotive industry’s extensive collaboration
with multiple vendors, presents significant challenges in man-
aging software components within automotive systems. While
AUTOSAR (AUTomotive Open System ARchitecture) aims to
address these issues by enhancing software modularity and
reusability, comprehensive studies on end-to-end latency, real-
time capability, and timing analysis for safety-critical applications
remain limited. This study proposes a chain-aware runnable
scheduling framework to enhance real-time performance and
reduce end-to-end latency in AUTOSAR-based automotive sys-
tems. Experimental results, incorporating priority assignment
and runnable allocation, and a case study on real vehicle control
units (VCU) of commercial vehicles, conducted using practical
scenarios, indicate that the proposed framework reduces the end-
to-end latency of the most safety-critical chain by 82% compared
to the existing AUTOSAR schedulers.

Index Terms—AUTOSAR, end-to-end latency, runnable
scheduling, automotive systems, chain-aware scheduling

I. INTRODUCTION

The growing complexity of software functions, along with
more frequent update cycles, has made software management
increasingly difficult in the automotive industry. Moreover,
the extensive collaboration with various vendors challenges
the ability of in-house development teams to ensure timely
updates of software and maintain integrity. AUTOSAR [1]
aims to address these challenges by enhancing the modularity,
reusability, interoperability, and security of automotive soft-
ware components.

Many safety-critical functions in the automotive industry,
such as perception pipeline and emergency stop, form specific
types of processing chains under the AUTOSAR environ-
ment. These processing chains consist of sequences of tasks
(runnables) that must be executed in a precise order and timely
manner to ensure the correct functional operation. Therefore,
the end-to-end latency from the recognition of a sensor event
to the corresponding action of an actuator is one of crucial
metrics for the system safety.

Despite the widespread adoption of AUTOSAR in the auto-
motive industry, comprehensive studies on end-to-end latency
analysis, real-time capability, and timing analysis for this
framework remain limited. The existing literature often falls
short of providing in-depth examinations of how AUTOSAR
handles runnable scheduling, particularly in complex, safety-
critical automotive applications while extensive research has
been conducted in other middleware frameworks such as ROS

and ROS 2. The absence of robust timing analysis frameworks
and methodologies for AUTOSAR makes it challenging to
ensure that such systems can meet stringent real-time perfor-
mance criteria, potentially leading to unforeseen issues in the
industrial environment.

This paper aims to address this gap by proposing new
runnable scheduling approaches with analysis frameworks for
AUTOSAR-based automotive systems. To the best of our
knowledge, there has been no recent work on formally ana-
lyzing the scheduling architecture of the AUTOSAR platform,
especially with respect to end-to-end latency of processing
chains. The main contributions of this paper are shown as
follows:
• We present chain-aware runnable scheduling framework

which is inspired by the existing work [5], yet specifically
tailored for AUTOSAR environment. This includes priority
assignment for runnables and the allocation of runnables to
OS-tasks and available CPU cores.

• We conduct an analysis of end-to-end latency of chains
under three different runnable scheduling approaches in
AUTOSAR: time-triggered (basic OS-task), event-triggered
(extended OS-task), and chain-aware (modified extended
OS-task). We compare their performance characteristics
using randomly-generated workload sets under various ex-
perimental setups.

• We perform a case study on the real vehicle control units
(VCU) platforms provided by an automotive company using
a practical scenario.

II. RELATED WORK

In the context of AUTOSAR, many studies have been
conducted on mapping runnable to OS-tasks. Authors in [10,
11, 14, 15] proposed rules for mapping runnables to OS-
tasks based on intra-ECU communication without considering
schedulability of the system. Zeng et al. [14, 15] used MILP
(mixed integer linear programming) method, considering data
consistency to find optimal mapping and tasks priorities.
In [10, 11], authors developed heuristic distribution algorithms
for runnables across multiple cores to balance the core loads
uniformly. However, none of these approaches considers end-
to-end latency of processing chains in AUTOSAR.

Analyzing end-to-end latency of chains has been studied
extensively in read-execute-write semantics. Authors proposed
analysis of tasks with precedence constraints in multi-core
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environment in [12, 13]. Becker et al. [2] presented analytical
methods to bound the end-to-end latency of a chain under
fixed-priority scheduling. Analysis of end-to-end latency of
cause-effect chains are addressed in [8]. Choi et al. in [4]
proposed chain-based fixed-priority scheduling to improve
end-to-end latency for loosely-dependent chain configuration.
However, these approaches cannot be directly applicable to
AUTOSAR because of discrepancies in scheduling model.

The recent work of Choi et al. [5] focused on improving
end-to-end latency of chains by proposing priority-driven
chain-aware scheduling framework for ROS 2 middleware.
They re-designed the ROS 2 callback scheduling structure and
proposed resource allocation policies. While their approach
inspires our work, it is not directly applicable to AUTOSAR
due to the architectural differences between ROS 2 and AU-
TOSAR platform. We review their work in more details and
explain how to adapt their ideas in the Section V.

III. BACKGROUND AND SYSTEM MODEL

A. AUTOSAR architecture

The AUTOSAR architecture is structured into three primary
software layers running on a microcontroller: the application
layer, the runtime environment (RTE), and the basic software
(BSW) as illustrated in Fig 1. Application software layer
is hardware-independent, containing the software components
(SWCs) that define the application logic and functionality. The
RTE faciliates communication between software components
and provides access to the BSW. It serves as the interface
for applications, ensuring that components can interact seam-
lessly. The BSW is subdivided into three major layers such
as service-, electronic control unit (ECU) abstraction-, and
microcontroller abstraction-layer. These sub-layers provide
core services such as communication, diagnostics, memory
management, and operating system services, aiming to create
a standardized environment for automotive applications. The
BSW layer also incorporates the AUTOSAR OS based on
OSEK [7]1 as part of its operating system services.

1OSEK is a standard for a real-time operating system (RTOS) designed
specifically for automotive applications. Now, it is referred to as AUTOSAR
OS

B. Key components in AUTOSAR
There are several fundamental key components that play

a pivotal role in real-time scheduling in AUTOSAR-based
automotive systems:
Event. Events in AUTOSAR are used to trigger actions, signal
state changes, and facilitate the coordination of tasks within the
system. Timing events are triggered based on a predefined time
interval and used to periodically activate tasks or runnables at
regular intervals, which is mainly used in automotive systems.
Data receive events are triggered when new data is received
on a particular port or communication channel. It is also used
to activate a task or runnable when new data arrives, ensuring
that the data is processed promptly, although it is not widely
used in automotive systems’ setting.
Runnable. A Runnable is the minimal schedulable entity
in AUTOSAR. It represents a piece of functional behavior
within a software component and is associated with a specific
event defined by a designer. The execution order of runnables
can be configured, and they are allocated to OS Tasks by
system designers. However, there are no official guidelines
for resource allocation.
OS Tasks. OS Task is an OS-level scheduling entity provided
by OSEK in AUTOSAR. OS Task can contain one or multiple
runnables and executes them by their predefined order in a
non-preemptable manner. OSEK manages the execution of OS
Tasks by their priorities on the assigned CPU cores, which
corresponds to a thread in typical operating systems. OS
Tasks are categorized into basic- and extended OS Tasks: (1)
Basic OS Task is suitable for periodic activities that do not
require complex synchronization or waiting, such as polling
sensors at regular time intervals, because it cannot be put
into a waiting state. (2) Extended OS Task can enter waiting
states, allowing them to wait for external events, resources, or
alarms. This makes them more flexible and capable of handling
complex synchronization scenarios, which is ideal for event-
driven activities.
RTE. RTE plays a crucial role in ensuring seamless commu-
nication and integration between software components and the
underlying BSW. The key functions of the RTE are the inter-
component communication, scheduling and task management,
and resource management such as memory, CPU time, and
I/O bandwidth to different software components.

C. System Model

In this section, we introduce our system model for
runnables, OS Tasks, and chains under AUTOSAR environ-
ment. Our system model incorporates a fixed same clock
frequencies across all CPU cores. This model provides a robust
framework for developing and deploying real-time automotive
applications.

1) Runnable model: The system consists of real-time
runnables, each triggered by either a timer event using an
alarm or various external events, e.g., the completion of its
precedent runnable in a chain. Each runnable can be associated
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with more than one chain. A runnable ri is characterized as
follows:

ri := (Ci, Di, Ti)

• Ci: The worst-case execution time of job of ri.
• Di: The relative deadline of a runnable ri, which is equal

to the deadline of its associated chain.
• Ti: The period of a runnable ri, equal to the period of its

associated chain (Di ≤ Ti).
We denote the priority of runnable ri within the OS Task it
belongs to as πri .

2) OS-task model: We represents a set of OS-tasks as
below:

T = {τ1, τ2, ..., τj , ..., τE}
The priority of j-th OS-task is denoted by πτj and T is sorted
in descending order of priority, i.e., πτj > πτj+1

, and each OS-
task has a unique fixed priority during the design phase. The
scheduling of OS-tasks is conducted in a preemptive manner.
To avoid confusion with a typical workload (e.g., a task),
we use the term “OS-task” specifically to represent OS task
within the AUTOSAR environment. The period of an OS-task,
denoted as Tτ is determined by the greatest common divisor
(GCD) of the periods of all runnables assigned to that OS-task.

3) Chain model: Each chain consists of one or more
runnables. A chain, defined as Γc, is denoted as below:

Γc := [rs, rm1, rm2, ..., re]

• rs: The start runnable a chain Γc.
• rm∗: The intermediate runnables of a chain Γc.
• re: The end runnable of a chain Γc.
The superscript c uniquely identifies the chain Γc. The chain
initiates with the start runnable rs, progresses through the
intermediate runnables denoted as rm∗, and culminates with
the end runnable re. We consider chain models in two ways
as typically used in automotive systems: (1) time-triggered,
where all runnables are triggered by a timer event, and (2)
event-triggered, where the start runnable is time-triggered, and
all subsequent runnables in the chain are triggered by the
completion of the preceding runnable. We assume that the
priority of a chain, πΓc , is assigned by the system designer
based on its criticality or importance within the system. Chains
can also share a mutual (joint) runnable, which our proposed
framework supports.
End-to-end latency. Based on the above the chain model,
end-to-end latency refers to the duration between the release
of the first element in the chain(rs) and the completion of the
last element(re).

IV. CHALLENGES

In this section, we elaborate on the challenges of the
current AUTOSAR-based scheduling behavior as identified by
practitioners in the automotive industry.
Challenge 1. Shortcomings of resource allocation policy.
One of the primary challenges is the inadequacy of the
resource allocation policy in AUTOSAR. The current AU-
TOSAR standard does not provide comprehensive guidelines

for the resource allocations such as mapping runnables to OS-
tasks and assigning OS-tasks to available CPU cores. Without
clear policies, system designers often struggle to optimally
utilize the available resources, leading to potential underuti-
lization or overutilization of system resources. The manual
process is time-consuming for system designers and prone
to human errors, which can compromise system reliability
and performance. Resource allocation becomes even more
challenging when multiple runnables that belong to different
functional chains need to be assigned to multiple OS-tasks
with various priority levels.
Challenge 2. Unpredictable timing behavior of the
runnables. Automotive functions necessitate that designers
comply with stringent timing requirements, particularly for
safety-related functions governed by standards such as ISO
26262. However, several factors contribute to the unpre-
dictability and unique scheduling of runnable execution in
AUTOSAR systems. These factors include varied activation
times triggered by external events and complex data dependen-
cies within runnable chains. A comparison of these scheduling
behaviors will be examplified in Section VI-C .

V. REVISITING PRIORITY-DRIVEN CHAIN-AWARE
SCHEDULING FOR ROS 2

In this section, we review the previously proposed chain-
aware scheduling framework for ROS 2 [5]. Since the frame-
work cannot be directly applied to the AUTOSAR environ-
ment, we revisit and verify the fixed concepts to adapt them
for use in the AUTOSAR environment.
Lemma 1 in [5]. ROS 2 was re-designed in [5] based on
the following two principles: (1) higher-priority chains should
execute earlier than low-priority chains, and (2) for a single
chain, a prior instance of the chain should be completed
before the newly released instance starts its execution. As
explained earlier in Section III, callbacks and executors in
ROS 2 correspond to runnables and OS-tasks in AUTOSAR,
respectively. Therefore, we employ these principles of Lemma
1 in [5] directly to our work.

A. Runnable scheduling strategies

While timer callbacks and regular callbacks are managed
separately from the system-level definition to their operation
across ROS 2 abstraction layers, all runnables in AUTOSAR
can be handled in the same manner except for the setting of
the RTE event, which can be either time-triggered or event-
triggered. Hence, we simplify the six callback scheduling
strategies from [5] to four runnable scheduling strategies as
follows:

We first describe two runnable scheduling strategies within
an OS-task.
• Runnables from a single chain. For an OS-task containing

runnables from a single chain Γc, the priorities of the
runnables are assigned in reverse order of their sequence
in the chain.

• Runnables from multiple chains. For an OS-task con-
taining runnables from multiple chains, Γc and Γc′ , where

3



πΓc<πΓc′ , all runnables of Γc′ should be assigned higher
priorities than those of Γc.
Then, runnables across OS-tasks can be executed as the

following two strategies.
• A single chain on one CPU. When a CPU has runnables

from only a single chain Γc, the OS-task containing the
lower-index runnables should have the same or lower pri-
ority than the OS-tasks on the same CPU that execute the
higher-index runnables of Γc.

• Multiple chains on one CPU. when a CPU has runnables
from multiple chains, Γc and Γc′ , where πΓc<πΓc′ , the
OS-task that contains the runnables of Γc′ should have at
least the same or higher priority than those containing the
runnables of Γc

VI. PROPOSED RUNNABLE SCHEDULING FRAMEWORKS

We propose two runnable scheduling frameworks for the
AUTOSAR environment based on our modified scheduling
strategies: (1) Event-Triggered Runnable Scheduling, and (2)
Chain-Aware Runnable Scheduling.

A. Event-triggered runnable scheduling

Event-triggered runnable scheduling leverages AUTOSAR’s
extended OS-task configuration. The initial runnable in a
chain is time-triggered, releasing and executing periodically
using a timer. All subsequent runnables are triggered by the
completion of their preceding runnable within the same chain.

Given the lack of official guidelines for resource allocation
and execution order of schedulable entities such as runnables
and OS-tasks, we propose a comprehensive resource allocation
scheme. This scheme aims to execute chains as independently
as possible, thereby reducing interference between chains. It
also ensures efficient utilization of resources and improves the
predictability of task execution.

Note that this approach does not require any modification of
the existing AUTOSAR framework, making it compatible with
current systems while enhancing their performance. However,
it cannot strictly satisfy scheduling principles described in
Section V. We address this issue by proposing a new chain-
aware scheduler in the next subsection.

Listing 1 describes the extended OS-task code template for
the event-triggered runnable scheduler. This OS-task retrives
the OS events, which are defined as a bit pattern in a data
type EventMaskType. Each bit represents a specific event,
enabling the OS to execute all ready runnables in order after
checking their respective bits by masking flags, such as e.g.,
r1_flag within the loop. After executing runnables, it clears
all OS events and conducts the termination process.
TASK (ExampleTask)
{

EventMaskType evt;
while(1)
{

OSWaitEvent();
OSGetEvent(&evt);
OSClearEvent(evt);

// Execution of Runnable1
if (evt & r1_flag) == r1_flag
{

Runnable1();
}
// Execution of Runnable2
if (evt & r2_flag) == r2_flag
{

Runnable2();
}
// Terminate task to let the OS schedule the next

task
evt = RTE_CLEAR;
TerminateTask();

}
}

Listing 1: Extended OS-task code

Priority assignment of runnables. The priority assignment
for runnables adheres to the scheduling strategies explained
in Section V. First, chains are sorted in ascending order of
their semantic priorities. For each chain, runnables are then
assigned priorities such that a runnable with a lower index
gets a lower priority. Thus, the start runnable of a chain gets
the lowest priority within the chain, while the end runnable
gets the highest priority.

...
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Fig. 2: Diagram of runnable allocation algorithm

Runnable allocation We present a runnable allocation scheme
for AUTOSAR. The proposed algorithm allocates runnables
into OS-tasks and available CPU cores, taking into account the
scheduling strategies described in Section V. Fig 2 illustrates
the diagram of the proposed runnable allocation algorithm. The
allocation is performed in a manner that separates the chains as
much as possible to reduce interference between them. This
scheme allocates higher-priority runnables of critical chains
first to available OS-tasks, then maps them onto the CPU core
where the utilization is the minimum. When an OS-task is
assigned to a CPU core, the scheme verifies the scheduling
strategies and the sum of the utilization, i.e., the utilization
should be less than 1. If the conditions are not met, system
designers are guided to re-design software components. When
there are no empty OS-tasks available, the scheme finds a
non-empty OS-task from the CPU core with the minimum
utilization and allocates the runnable to the OS-task with
the lowest priority, ensuring compliance with the scheduling
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Fig. 3: Examples of runnable scheduling

TABLE I: Runnable sets

Chains
Chain 1 Γ1 =: [r1, r3, r2]
Chain 2 Γ2 =: [r4, r6, r8, r7, r5]

Runnables T [ms] C [ms] Runnables T [ms] C [ms]
r1 20 2 r5 40 2
r2 20 4 r6 40 4
r3 20 2 r7 40 2
r4 40 4 r8 40 4

strategy requirements. It is worth noting that mutual runnables
can be considered part of the highest priority chain.

B. Chain-aware runnable scheduling

Now, we propose a chain-aware runnable scheduling frame-
work for AUTOSAR. To realize Lemma 1 and runnable
scheduling strategies within the AUTOSAR environment,
modifications to the extended OS-task are necessary because
the default extended OS-task cannot execute runnables in
their priority orders, as will be exemplified in Section VI-C.
Listing 2 briefly describes the modified extended OS-task
structure. Compared to the default extended OS-task, the mod-
ified structure executes the highest-priority runnable first and
then conducts a termination process, clearing the register bit
associated with the runnable that just executed. This enables
the second highest-priority runnable to be executed in the next
loop. Hence, this structure ensures the correct execution order
and strictly satisfies Lemma 1, thereby improving the latency
of safety-critical chains by preventing unwanted interference.
...

// Execution of Runnable1
if (evt & r1_flag) == r1_flag
{

Runnable1();
OSClearEvent(evt & r1_flag);
TerminateTask();

}
// Execution of Runnable2
if (evt & r2_flag) == r2_flag
{

Runnable2();
OSClearEvent(evt & r2_flag);
TerminateTask();

}
...

Listing 2: Modified extended OS-task code
C. Example of runnable schedulings

We run three different runnable scheduling approaches:
time-triggered (3a), event-triggered (3b), and chain-aware
runnable scheduling (3c). As described in Table I, runnable
set comprises two chains with 3 and 5 runnables, respectively.
The chains have periods (T) of 20 or 40 ms and execution
time (C) of 2 or 4 ms.

We assume that all runnables are allocated to a single
OS-task and the index of a runnable represents the order of
execution within the task, i.e., ri has higher priority than rj
where i < j. Besides, chain 1 is more critical than chain 2.

As shown in Fig 3a, chains 1 and 2 experience the maximum
end-to-end latencies of 26 ms and 92 ms, respectively, when all
runnables are scheduled by a default time-triggered runnable
scheduling. Under the event-triggered runnable scheduler, la-
tency of chains is 16 ms and 28 ms, respectively, and 8 ms
and 32 ms under the chain-aware runnable scheduler. This is
because the proposed chain-aware scheduler strictly prioritizes
safety-critical chains, significantly improving latency of chain
1, e.g., reducing by 69% compared to time-triggered runnable
scheduler (AUTOSAR default).

VII. ANALYSIS OF END-TO-END LATENCY

This section presents the end-to-end latency analysis of a
chain for three different runnable scheduling approaches: time-
triggered, event-triggered, and chain-aware schedulers.

A. Latency analysis for time-triggered runnable scheduler

The analysis of end-to-end latency for time-triggered
runnable scheduler can be conducted in two steps: (i) cal-
culating the lower bound of the start time (LBs

c (i)) and the
upper bound of the finish time (UBf

c (i)) of a runnable ri as
described in [6], and (ii) identifying the chain instance that has
the maximum end-to-end latency based on the time bounds
obtained in the previous step.

In a first step, we re-write the lower bound of the start time
and the upper bound of the finish time of a runnable ri of Γc

to fit our system model as below:
Lower bound of start time of ri in [6].

LBs(i) =

i−1∑
k=1

Ck +
∑

τh∈hp(τc)

⌈ δh
Tτh

⌉
× Ch (1)

where hp(τc) = {τh|mh = mc, πh > πc}, with mh represent-
ing the CPU core to which τh is allocated, Ch =

∑|τh|
k=1 Ck

denoting the total execution time of all runnables in τh, and
δh = max(0, LBs(i)− (Tτh − Ch) + 1).
Upper bound of finish time of ri in [6].

UBf (i) =

i∑
k=1

Ck +
∑

τh∈hp(τc)

⌈UBf (i)

Tτh

⌉
× Ch (2)

Note that the first terms of the above Equations represent
the execution time of runnable rk of chain Γc.
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Algorithm 1 Maximum end-to-end latency of Γc

1: Input: Γc, ∀τ ∈ Γc

2: Output: max(latency)
3: latency ← [] ▷ An empty array to save latency.
4: s flag← true
5: cnt← 0
6: for all ri ∈ Γc do ▷ Check a chain in a single OS Task.
7: if ri /∈ τc then
8: s flag← false
9: end if

10: end for
11: if s flag then
12: for all ∀(ri, rj) ∈ Γc, i < j do
13: if πri < πrj then
14: cnt← cnt + 1
15: end if
16: end for
17: latency← UBf (|Γc|) + cnt× Tτ

18: else
19: s← LBs(1)
20: for t = s to UBf (1)− Cr1 do
21: f ← t+ Cr1

22: for all ri, 1 < i < |Γc| do
23: f ← find finish time(f, ri)
24: end for
25: latency← latency ∪ f
26: end for
27: end if

In a second step, we propose an algorithm to find the max-
imum end-to-end latency among all possible chain instances.
Algorithm 1 describes the process of finding the maximum
end-to-end latency of a chain under time-triggered runnable
scheduling. It begins by determining whether all runnables
of the target chain are allocated into a single OS-task or not
(line 6 to 10). If a chain uses only a single OS-task, the
algorithm counts the number of reversed orders of runnables
by comparing their execution order (i.e., priorities of runnables
πri ) with the indices of any two runnables within the chain
(line 14). The latency is then calculated by adding the upper
bound of the finish time of the last runnable in the chain
and the count multiplied by the period of the OS-task to
which the runnables belong (line 17). If the runnables of a
chain are distributed across multiple OS-tasks, the algorithm
investigates all possible end-to-end latencies based on the
time bounds of a runnable obtained in the first step (line 19
to 25). The function find_finish_time iteratively finds
the nearest completion time (f ) of the next runnable (ri) by
adding its period. This process returns a possible latency after
searching through all runnables of Γc (line 22 to 24). Finally,
the maximum latency is chosen from all the potential latencies
that the chain could experience.

B. Latency analysis for event-triggered and chain-aware
runnable scheduling

In this section, we first propose an end-to-end latency
analysis method for chain-aware scheduling. Then, we utilize
this technique to analyze the latency of a chain in the event-
triggered scheduler by reconsidering the interference affecting
the target chain.

Chain-aware scheduling. To prevent undesirable latency in-
creases, our chain-aware runnable scheduler strictly adheres
to the priority conditions of runnables and OS-tasks under
the chain configuration, as outlined in Lemma 1 of [13] for
callbacks and executors in ROS 2. Therefore, we adapt the
end-to-end latency analysis of [5] directly by adjusting the
system model for AUTOSAR.

The analysis of end-to-end latency for the chain-aware
runnable scheduler can be conducted in two steps as described
in [5]: (i) computing the worst-case response time (WCRT) of
each segment (i.e., a consecutive subset of a chain Γc on one
CPU core) of a chain as per Lemma 3 of [5], and (ii) summing
up all WCRTs of all segments of a chain as per Theorem 1
of [5].

We first re-write Lemma 3 from [5] to align with the system
models used in our work:

Lemma 1 (WCRT [5]). The worst-case response time of a
segment Φi ⊂ Γc, denoted by Rn

c,i, is bounded by the following
recurrence:
Rn+1

c,i ← Bi +
∑

∀j:rj∈Φi

Cj +
∑

∀k:rk∈τ(Φi)∨
rk∈τHP

ηi(R
n
c,i, rk)× Ck

(3)
where Bi is the blocking time from lower priority runnable
(Equation (2) in [5]), ηi is the maximum number of arrivals
of a runnable that causes interference to a target segment Φi

(Lemma 2 in [5]), and τHP is a set of OS-tasks with higher
priority than the OS-task of Φi. The recurrence starts with
R0

c,i = Bi +
∑

∀j:rj∈Φi
Cj .

Then, the end-to-end latency of a chain Γc is computed by:

Theorem 1 (End-to-end latency [5]).

LΓc ←
∑

Φi⊂Γc

Rn
c,i + S(Γc) (4)

where Φi is a segment of the chain Γc and S(Γc) is the
maximum blocking delay caused by a prior instance of the
chain provided in Lemma 4 of [5].

Due to the nature of overwriting the mask flag in the ex-
tended OS-task structure for runnable execution (as explained
in Section VI-B ), when the worst-case response time of a
segment of a chain exceeds the period of the chain, the next
instance can be delayed by at most one cycle of the chain’s
period. This behavior is similar to the overload handling
mechanism of ROS 2. Therefore, Theorem 1 remains valid
for our proposed chain-aware runnable scheduler.

Event-triggered scheduling. Under the default extended OS-
task structure, runnables that belong to any prior instance of
all chains can interfere with the execution of a runnable for
the target segment, which enables Lemma 1 not valid for the
event-triggered scheduler. Therefore, we modify the Lemma 2
in [5] as below:

Corollary 1.1. The maximum number of arrivals of a runnable
rk ∈ Γc′ that causes interference to a target segment Φi ⊂ Γc
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during an arbitrary time window t is bounded by:

ηi(t, rk) =


⌈

t

TΓc′

⌉
, if π

Γc′ ≥πΓc∧P (Φi)=P (τk)

0 , otherwise
(5)

where TΓc′ is a period of chain Γc′ .

Proof. Since any runnable (rk) in a higher- or the same
priority OS-task on the same CPU core can interfere with the
target segment, they are considered sources of interference.
Thus, the proof is done.

VIII. EVALUATION

This section evaluates our proposed runnable scheduling
frameworks by comparing them with existing AUTOSAR
runnable scheduling approaches. We begin with an industrial
case study inspired by current automotive systems. Then,
we perform an end-to-end analysis using randomly generated
workloads to investigate the performance characteristics across
various experimental setups.
Comparison of approaches. We compare three runnable
scheduling approaches. The first approach is AUTOSAR-
default Runnable Scheduling (ADRS), which uses only a time-
triggered chain configuration between runnables, equipped
with the latency analysis framework explained in Sec-
tion VII-A. The second approach is Event-Triggered Runnable
Scheduling (ETRS), which utilizes the extended OS-task of
AUTOSAR to enable the triggering of runnables by exter-
nal events, with the latency analysis framework explained
in Section VII-B. Lastly, Chain-Aware Runnable Scheduling
(CARS) is our proposed scheduling approach, with the latency
analysis described in Section VII-B.

A. Case study

A case study was conducted on a commercial Vehicle
Control Unit (VCU) equipped with Infineon TC3xx micro-
controller commonly used in automotive industry. We used the
Matlab AUTOSAR toolbox to configure the software compo-
nent (SWC) layers and employed the Mobilgene AUTOSAR
platform tool provided by Hyundai AutoEver to edit other
layers, such as RTE and BSW, and flashed the generated
binary onto the VCU. To measure the latency of chains, we
embedded timestamp code at the beginning and the end of all
runnable executions. These timestamps were transmitted to the
host laptop via the VCU’s CAN communication interface.

The scenario of the case study is inspired by the highest-
level controller, which is responsible for managing motor
torque, vehicle start, and various other functional controls
of a vehicle, as listed in Table II. It involves 40 runnables,
with a total utilization (U ) of 0.52, organized into 8 real-time
chains where lower-indexed chains have higher priorities, such
as torque control (Γ1) and emergency stop (Γ2). Each chain
comprises 5 runnables. We assume the availability of 5 OS-
tasks and a single CPU core. Since ADRS does not have
a specific resource allocation guideline, we used the worst-
fit decreasing (WFD) approach to allocate runnables to OS-
tasks. For ETRS and CARS, the first 4 chains areß assigned to

TABLE II: Case study chain configuration

Chains
Chain 1 Γ1 =: [r1, r3, r2, r4, r5]
Chain 2 Γ2 =: [r9, r6, r7, r6, r10]
Chain 3 Γ3 =: [r15, r11, r12, r14, r13]
Chain 4 Γ4 =: [r17, r18, r16, r20, r19]
Chain 5 Γ5 =: [r23, r21, r22, r24, r25]
Chain 6 Γ6 =: [r26, r28, r27, r29, r30]
Chain 7 Γ7 =: [r34, r32, r33, r31, r35]
Chain 8 Γ8 =: [r37, r38, r36, r40, r39]

Runnables T [ms] C [ms] Runnables T [ms] C [ms]
r1 ∼ r5 10 0.128 r21 ∼ r25 10 0.096
r6 ∼ r10 10 0.128 r26 ∼ r30 10 0.192
r11 ∼ r15 10 0.096 r31 ∼ r35 10 0.192
r16 ∼ r20 10 0.12 r36 ∼ r40 10 0.08

higher-priority OS-tasks separately, while the remaining chains
are all assigned to the last OS-task based on our proposed
allocation scheme.
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Fig. 5: Case study

Fig 5 shows the results of observed and analyzed latencies
of 8 chains. As expected, CARS significantly outperforms the
other approaches in terms of end-to-end latency, providing
tight upper bounds for most chains. It is worth noting the
release time of chain instances only can be validated under
CARS. This is because the first runnable of chain 1, which
is allocated the highest-priority OS-task, always starts exe-
cution at its release time, which is not guaranteed by other
approaches.

B. End-to-end latency experiments

In this subsection, we conduct all experiments on a machine
equipped with an Intel Xeon W-2295 3.0 GHz processor and
32GB of memory, running on Ubuntu.
Workload generation. We use 1,000 randomly generated
runnable workload sets for each experimental setting, with the
utilization of each workload set ranging from 0.2 to 0.85. For
a workload set, each runnable’s utilization is obtained using
the UUniFast algorithm [3]. Motivated by current commercial
automotive systems and a prior benchmarks work [9], the
runnable period is chosen randomly from the set 10, 20, 50,
100, 1000 ms. Each runnable workload set consists of 6 chains,
with the lower-indexed chain being more critical than the
others, and each chain comprising 3 runnables. The order of
runnables in each chain is randomly selected.
Comparison of the average end-to-end latency of chains.
The results of the average end-to-end latency for 6 chains at
each utilization are shown in Fig 4. In this experiment, we
assume that all runnables are allocated into a single OS-task
and mapped onto a single CPU core. The average end-to-end
latency increases as the utilization increases for all approaches.
CARS significantly outperforms the other two approaches,
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Fig. 4: Average end-to-end latency of chains by utilization
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Fig. 6: Distribution of latencies (U = 0.8)

specifically reducing latency by 82% for the most critical chain
(i.e., chain 1) when the utilization is 0.8. Additionally, CARS
strictly prioritizes chains based on their criticality, resulting
in a diminishing difference between ETRS and CARS as the
criticality of chains decreases, i.e., from chain 1 to chain 6.

Fig 6 shows the distributions of end-to-end latency of 1,000
runnable sets when each set has a utilization of 0.8. As
expected, CARS significantly reduces the end-to-end latency
compared to the other approaches.
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Fig. 7: Multiple OS-tasks and CPU cores setup

Multiple OS Tasks and CPU Cores. In this experiment, we
generate a workload set with a utilization of 1.3 and use two
OS-tasks and two CPU cores. Since ADRS does not have
any official resource allocation guidelines, we used the worst-
fit decreasing (WFD) approach, while ETRS and CARS used
the proposed resource allocation scheme. As shown in Fig 7,
CARS significantly outperforms the other two approaches in
terms of end-to-end latency for all 6 chains. This is because the
proposed resource allocation framework distributes runnables
based on their chain configuration, thereby minimizing inter-
ference between them. On the other hand, ADRS exhibits very

high latency results compared to the other two approaches
because WFD does not consider the chains’ structure.

IX. CONCLUSION AND FUTURE WORK

In this paper, we addressed the challenge of managing
end-to-end latency performance in AUTOSAR-based automo-
tive systems. We introduced a novel chain-aware runnable
scheduling framework that enhances the efficiency of runnable
execution by prioritizing runnables and optimizing their allo-
cation to OS-tasks and CPU cores. Our approach, inspired
by existing methodologies, was tailored specifically for the
AUTOSAR environment. As future work, we aim to explore
further refinements and extensions of our framework, including
its integration with emerging self-driving technologies and
related applications.
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