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Abstract—Intermittently-powered devices have gained much
interest in recent years. However, scheduling real-time tasks while
supporting data consistency, timekeeping, and schedulability
guarantees on these devices still remains a challenge. Many
sensing tasks need long indivisible sensor reading operations,
but most prior work has limited their focus to the forward
progress of computation-only tasks. In this paper, we propose
a scheduling framework to execute real-time periodic tasks with
atomic sensing operations. Our proposed method keeps track of
time progress and ensures the periodic execution of sensing tasks
while efficiently utilizing intermittent power sources. We provide
schedulability analysis to determine if a taskset is schedulable
under a given charging condition. As a proof-of-concept, we
design a custom programmable RFID tag device, called R’tag,
and demonstrate the effectiveness of our framework in a realistic
sensing application. Evaluation results show that the proposed
method satisfies the real-time task execution requirements on
IPDs in terms of task scheduling, timekeeping, and periodic
sensing while significantly outperforming prior work.

Index Terms—real-time systems, task scheduling, intermit-
tently powered devices

I. INTRODUCTION

INTERMITTENTLY powered devices (IPDs) recently have
gained much interest in a wide variety of fields, from

wireless sensor networks to the Internet of Things (IoT), due to
their small size, low-cost, and low-maintenance requirements.
These devices, which are powered by intermittent power
resources such as sunlight, heat, vibration, or Radio Frequency
(RF) signals, have diverse applications including smart home,
smart agriculture, and health monitoring, to name but a few.
IPDs run without batteries, therefore, they do not need battery
replacement and regular maintenance. They can last for years,
or even decades, without regular care. Furthermore, they can
be used in harsh environments where batteries cannot last long,
e.g., high temperature environments and inside the body.

Data freshness and timely execution are the key require-
ments for many sensing tasks, especially those running on
IPDs. Data freshness, also known as the age of information,
is the time elapsed since the latest data was generated. If a
certain event in the environment is sensed long after the actual
occurrence, the reaction may become either ineffective or in
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some cases even dangerous. In most IPDs, long operations
get divided into multiple atomic, non-preemptive sub-tasks
and execute over multiple power cycles [2]–[5]. Depending on
the energy availability, the collected data may become stale,
and consequently unusable, in the middle of the process. For
example, in blood sugar monitoring for a diabetic to release the
proper amount of insulin, any late or improper action would
cause a catastrophic damage.

In many sensing applications, data collection from sensor
peripherals needs a relatively long execution time, hundreds
of milliseconds, which cannot be divided into multiple parts.
For example, in gas and environmental sensors such as Bosch
BME680 [6], the heater inside the sensor needs to run continu-
ously for a long time before performing a valid measurement.
Any device power-off during the execution will require the
process to start from the beginning since the hardware state of
sensor peripherals cannot be saved and resumed. In IPDs, the
energy provided by a small energy storage, typically several
µF capacitors, is not sufficient to complete these types of
operations. Increasing the energy storage size is not a practical
option since it causes long charging times due to the slow rate
of voltage increase of large capacitors and may diminish the
whole purpose of using IPDs.

In this paper, we propose a real-time scheduling framework
for IPDs to address the aforementioned challenges. Our frame-
work provides an energy model that is specifically designed to
capture the charging and discharging characteristics of IPDs
as well as the periodic execution requirements of sensing
tasks. Unlike prior work, our scheduler judiciously controls the
charging level of capacitors, which allows storing more energy
than what is required to just turn on the MCU. The scheduler
computes the required level of voltage to complete the given
amount of computation and sensor operations, and makes
the device wait in low-power mode until the required level
is reached. This enables the successful execution of a long
indivisible sensor operation, which was hardly doable by prior
work. Furthermore, our work naturally supports timekeeping,
which is important to ensure timely and periodic operation
and to check the freshness of data obtained from sensors. It
is worth noting that our work specifically focuses on IPDs
harvesting energy from RFID readers [1]–[3], [7]–[12], but
we believe our ideas could be applied to those using different
energy sources.

The proposed framework schedules tasks in a non-
preemptive manner, which is the fundamental requirement of
the state-of-the-art IPD kernels and programming models [2]–
[5], [13] to ensure forward progress and memory consistency
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in irregular power losses.1 This is also important for practical
sensing applications as sensor operations are non-suspendable
as discussed above. Hence, our work is applicable to existing
IPD tools and runtime systems without imposing unrealistic
assumptions on task execution.

Based on our scheduler design, we derive the schedulability
analysis of periodic tasks and the minimum charging rate
required to satisfy all deadlines of a given taskset. To the
best of our knowledge, this is the first work that provides
sufficient conditions to guarantee real-time task schedulability
while considering the energy requirement and non-preemptive
nature of tasks on IPDs in practice. We characterize the inter-
mittent availability of a charging source as a periodic energy
supply model, and analyze schedulability under fixed-priority
scheduling, e.g., Rate Monotonic (RM), and the Earliest-
Deadline First (EDF) while considering different energy de-
mands of individual tasks. In addition, we present analyses
to answer the following three interesting questions: (i) how
much harvested energy is required to schedule a given taskset,
(ii) how long can an IPD tolerate and continue to meet task
deadlines in the event of occasional energy supply misses, and
(iii) how long will it take for the IPD to fully recover from a
complete power loss.

To verify the effectiveness of the proposed framework in
practical sensing applications, we developed a prototype IPD
equipped with an environmental sensor and a chemiresistive
sensing capability. We implemented the proposed scheduler
on our IPD to guarantee real-time task schedulability. Our
implementation also includes the data privatization method [3]
to ensure data consistency and forward-progress even in the
event of a sudden power loss. Experimental results from both
simulation and real hardware demonstrate that our method
outperforms the state-of-the-art in both static and dynamic
priority scheduling policies, satisfies the timing constraints of
real-time tasks on an IPD, and effectively utilizes intermittent
energy availability.

II. RELATED WORK

Most prior work on IPDs has focused on the forward
progress guarantees of a program between several power fail-
ures. In [2], [14], checkpointing methods are proposed to store
intermediate results in non-volatile memory and retrieving
the results in the next power cycle so that the program can
continue to run where it was left at power failure. Mayfly [13]
is a graph-based programming language for IPDs, which
divides a long-running task into atomic (non-preemptable) sub-
tasks with timing constraints. The program written in Mayfly
keeps data consistency by saving the results of each task in
non-volatile memory so that they can be used as input for other
tasks. Capybara [2] uses multiple capacitor banks to mitigate
the atomic execution time problem. [15] presents an energy
management unit that allows an IPD to accumulate energy
coming from intermittent sources, and proposes a dynamic
energy burst scaling technique that keeps track of the load’s
optimal power point and provides the required burst execution

1For example, InK [3] allows preemption only at the boundaries of tasks.
Hence, once a task starts execution, it runs non-preemptively until completion.

time while minimizing the total energy consumption. However,
it requires extra hardware circuitry, which is not appealing
to IPDs in a small form factor. Furthermore, similar to the
other approaches like [4], [9], the device goes off whenever
it exhausts the energy and loses the notion of time so it
is unable to schedule sensing tasks with periodic execution
requirements. To address this timekeeping issue, [13], [16],
[17] presented solutions that enable the device to keep track
of time up to several minutes of power failure. However, these
approaches either use a real-time-clock (RTC) that is operated
by a separate battery [13] or an extra circuit that needs to be
attached to the device and lasts up to only several seconds in
the event of power failure [16], [17].

InK [3] is an event-based kernel developed for timely
execution on IPDs. It relies on an external timer that keeps
track of time while the microcontroller (MCU) is in low power
mode, and uses interrupts to wake up the device. It uses
a similar method to [13] to store the results of each non-
preemptive task in non-volatile memory for forward progress
and data consistency. Data communication between execution
segments is done through data channels, which use a double-
buffered method to ensure data consistency between power
failures. Efficient task execution on IPDs is also a challenge.
[18] proposes a method to maximize the task completion rate,
i.e., the number of tasks executable within a fixed interval of
time, on an RFID-powered device. It determines when to start
tasks in order to minimize the occurrence of power failure in
the middle of task execution. However, it does not consider
the periodicity and deadline requirements of individual tasks.
Zygarde [19] is an imprecise computing-based task execution
scheme that enables deep neural networks execution on IPDs
with an acceptable inference accuracy. Tygro [20] is a 3D
orientation tracking by integrating data from multiple IPDs
which are powered by an RFID reader.

Research on the real-time scheduling problem of IPDs with
deadline requirements is still in its early stage. Celebi [10]
is recent work focusing on this problem. It presents two
versions of schedulers, offline and online, among which only
the offline scheduler is designed for schedulability in mind.
However, Celebi has several limitations for practical use. First,
it assumes all tasks are fully preemptive at any point of time.
This is incompatible with the state-of-the-art programming
models and kernels discussed above and inapplicable to atomic
sensing tasks interfacing with sensor peripherals. An unex-
pected power loss during preemptive execution could lead
to data inconsistency or no forward progress, which in turn
adversely affects the proposer operation of tasks when the
power recovers. Secondly, it assumes that energy harvesting
and task execution are mutually exclusive and no discharging
occurs when the MCU is in sleep mode, which are not
true in many real IPDs [2], [8], [9]. Thirdly, it does not
provide an analytical method to test schedulability under its
proposed approach, and requires generating a schedule for one
hyperperiod (the least common multiple of task periods) to do
so. Note that this method is vulnerable to task release jitters
and consumes a significant amount of time when task periods
are not harmonic. Lee et al. [12] proposed a schedulability
analysis method for real-time tasks under fixed-priority and
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Fig. 1: Block diagram of an RFID energy harvesting device

EDF. However, it has similar limitations to Celebi, i.e., tasks
are preemptive at any time with no cost and energy harvesting
and task execution are mutually exclusive. In addition, [12]
implicitly assumes that the energy source is always available
and the charging time and period are determined by the voltage
threshold. We address these limitations in this work.

III. BACKGROUND AND SYSTEM MODEL

In this section, we describe the hardware and software
properties of the system which we use in the rest of the paper.

A. Hardware Characteristics

Most of the energy harvesting devices have the following
main units: energy harvester unit, energy storage unit, power
management unit, energy conversion unit, and processing unit.
The energy harvester unit converts the energy coming from
the energy source (e.g. light, wind, vibration, and RF signal)
to a type of energy (e.g. voltage and electrical current) that
can be accumulated in the energy storage unit. The storage
unit, usually consisting of capacitors, can store the energy to
be used to power the system. In the energy conversion unit,
voltage converters, rectifier, and regulator are used to convert
an energy source to the desired voltage for electrical circuits.
The power management unit controls when to store energy
and when to use the energy to power up the system. Finally,
in the processing unit, MCUs and sensors are used to perform
the desired operations. In this paper, we focus on IPDs that
contain a capacitor as an energy storage unit, following the
common model used in most of related work [1]–[3], [7]–
[10], [13], [18]–[22] where the size of a capacitor is typically
≤ 200µF and much smaller than batteries or supercapacitors.
It is worth noting that we do not consider devices that do not
have a capacitor at all or use different types of energy buffers
such as batteries.

Fig. 1 shows the general block diagram of a radio-frequency
identification (RFID) energy harvesting device. In this figure,
each unit is specifically designed to harvest the RF energy to
be used for the MCU and sensors. When the stored energy,
i.e., the voltage of the capacitor, reaches a specific level (called
power-on threshold), the power management unit switches to
turn on the MCU and sensors. When the voltage goes down
to the minimum voltage level for the MCU and the rest of
the circuit (called power-off threshold), the system is turned

off until the capacitor voltage is recharged to the power-on
threshold.

Depending on how energy is consumed, there are multiple
types of energy discharging in IPDs. We will analyze the
detailed characteristics of each discharging type under our
proposed scheduling framework in Section V. Below we give
the energy harvesting model used in this paper.

B. Energy Harvesting Model

To find the voltage equations for the circuit, we assume that
the energy source has a fixed energy transmission rate while
it is charging the device, e.g., an RFID reader is located at
a fixed distance from an RFID energy-harvesting device. We
consider a parallel resistor Rp to the capacitor, which consists
of the equivalent parallel resistor of the storage capacitor and
also the rest of the circuit’s resistance in parallel with the
capacitor. Therefore, the harvesting circuit would become an
RC model with a fixed rate energy source. Hence, the voltage
of the capacitor with a capacitance of C can be calculated by:

P

V
= C

dV

dt
+

V

Rp
(1)

By solving this equation, the voltage of the capacitor at time
t can be calculated as:

V =

√
PRp − e

−2t
CRp ∗ (PRp − V 2

0 ) (2)

where V0 is the voltage of capacitor at t = 0, and P is the
power received from the energy source after going through all
the voltage doubler stages. Based on (2), the time to reach
from voltage V0 to V , where V > V0, can be calculated as:

tcharging =
CRp

2
Ln

(
PRp − V 2

0

PRp − V 2

)
(3)

The energy source may not be always available to an
IPD, e.g., a mobile wireless charger traveling around several
IPDs [11]. We characterize the availability of the energy
source as a periodic energy supply model with two parameters,
(Cc, Tc), which means that for a period of Tc, the reader
charges the device for at least Cc time units. This can represent
both stationary and mobile wireless chargers. In case of a
stable, energy source with a constant energy provision rate,
it can be modeled as Cc = Tc. Note that this periodic energy
supply model is much more flexible and easier to use than the
one in [10] which requires exact energy-harvesting patterns
for every time unit. Also, it is important to mention that the
charging time and period, (Cc, Tc), do not impose limitations
on the periods of tasks. In other words, Tc can be much larger
than task periods or the hyperperiod of the entire taskset. Thus,
even with a long interval of the energy source unavailability,
the device can maintain the schedulability of the taskset as
long as our analysis, which will be given in Section V-C, holds.

C. Task Model

Periodic tasks are considered in this work. Tasks fall into
two categories: sensing and computation tasks. Sensing tasks
are those that collect data from sensors. All the communi-
cations to the sensor as well as sensor data transmissions
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are considered as sensing tasks. Computation tasks are CPU-
only tasks that do not involve direct interaction with sensor
peripherals but process data obtained from the sensors. The
dependency between sensing and computation tasks can be
easily resolved by using release offsets or deadlines if they
have the same period. In more complex scenarios, e.g., sensing
and computation tasks have different periods or each sensor
is used by multiple computation tasks with different periods,
sensing tasks can write data in memory at their own rates and
computation tasks can just proceed with the latest data stored
in memory, without having to introduce strong dependency
or synchronization constraints. This notion of independent (or
loosely dependent) operation of sensing and computation tasks
has been widely used in many practical applications, such as
read-execute-write and publisher-subscriber models [23]–[25].

In this paper, we characterize a task τi in a taskset Γ by
τi = (Ci, Ti, Di), where Ci, Ti, and Di are the worst-case exe-
cution time, period, and deadline of the task i, respectively. We
consider both fixed-priority scheduling and Earliest-Deadline
First (EDF) scheduling in this work. Without loss of generality,
we assume that a task with a smaller index has a higher priority
under fixed-priority scheduling, i.e., τ1 is the highest-priority
task, and has a smaller relative deadline under EDF, i.e., τ1
has the smallest relative deadline. All tasks are considered
non-preemptive, following the requirements of prior work for
the data consistency and forward progress of computational
workloads [2]–[5], [13] and respecting the nature of sensing
operations.

It should be noted that, if a program has multiple sensing
and computation segments, it can be divided into several non-
preemptive tasks with the same period. The correct execution
order of these divided tasks can be achieved by setting the
priorities and deadlines properly. For example, when a task τi
is divided into multiple subtasks τ1

i , τ
2
i , ..., τ

m
i , where m is

the number of subtasks, the deadline of each subtask τ ji can
be calculated as:

Dj
i = Di −

m∑
k=j+1

Cki (4)

where Cki is the execution time of a subtask τki . The execution
of a task τi is considered complete when all of its subtasks
finish their executions. It is worth mentioning that we only
consider hard real-time systems where all the tasks (or sub-
tasks) in the taskset should meet their deadline and any missed
deadline causes the system to lose its functionality.

IV. CHALLENGES

To elaborate on the challenges of IPDs in sensing appli-
cations, we conduct a case study using WISP, a well-known
RFID-harvesting device [8]. Based on [7], the power received
by WISP can be calculated as:

Pr =
GsGrη

Lp

(
λ

4π(d+ β)

)2

Pt (5)

where Gr is the reception antenna gain, Gs is the transmission
antenna gain, η is the rectifier efficiency, Lp is the polarization
loss, λ is the wavelength of the RF signal, d is the distance
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Fig. 2: Charging and discharging cycles of an IPD

from tag to reader, Pt is the transmission power, and β is the
adjustment parameter to adjust Friis’ free space equation for
short distance.

The parameters for the above equation are as follows.
We use an RFMAX S9028PCL polarized directional antenna
which has the transmission gain of Gs = 8 dBi. WISP
has a linear dipole antenna; therefore, the reception gain is
Gr = 2 dBi. WISP works on 915MHz frequency so the
wavelength is about λ = 0.327. For the other parameters,
we use the values of WISP reported in [7]: β = 0.2316,
η = 0.125, and Lp = 2. Since all the parameters except d
are constant, we can rewrite (5) to:

Pr = α

(
1

d+ β

)2

Pt (6)

where α and β are constant. As it can be inferred from (6),
the power received by the device is fixed when it is located at
a fixed distance to the reader. For the distance of 60 cm and
the power transmission of 1 W , the power reception would be
about 1 mW .

Let us consider an energy harvesting circuit following
the RC model discussed in Section III, with Rp = 1 GΩ
and C = 100 µF . Based on this harvester and the WISP
parameters obtained above, we now analyze the charging and
discharging characteristics of an IPD. Fig. 2 shows an example
of the voltage level of the device when it is always getting
charged by a stationary RFID reader. In this figure, red lines
are charging cycles (i.e., the device is turned off) and blue lines
are discharging cycles (i.e., the device is on and can execute
tasks). The power-on and power-off thresholds, both of which
are determined by hardware, are 2.2V and 1.8V, respectively.

We discuss four major challenges observed from this case
study. The first is to execute sensing tasks that require long
atomic operation without any power disruption. As shown in
Fig. 2, the device turns on when the voltage reaches the power-
on threshold, executes tasks, and turns off when the voltage
drops below the power-off threshold. The maximum execution
time allowed for a task is only about 40 ms. Therefore, any
task that needs more than 40 ms of continuous execution can
never complete its job. For example, most gas sensors are
designed to work at a specific temperature and have an internal
micro-heater to maintain that temperature. Since the heater
takes time to reach the desired temperature, any intermittent
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power loss would lead to a failure in sensing operation and
sensor data could not be obtained at all.

The second challenge is to support periodic tasks, e.g., sens-
ing every fixed time interval. However, IPDs start executing
tasks immediately when they receive enough energy to turn
on the device, e.g., discharging cycles (blue lines) in Fig. 2.
The problem becomes more complicated if the RFID reader
is not always available, e.g., mobile readers and line-of-sight
obstructions. In many sensing applications, capturing samples
at a specific time is required to guarantee the data freshness
and the validity of processing results.

The third challenge is timekeeping. The device goes off
after each discharging cycle and it loses the notion of time.
Therefore, any application that needs the notion of time over
long periods would not be able to run on IPDs. Using an RTC
with a separate battery is not a good solution as doing so runs
into the same problems as battery-powered devices. Without
having reliable and accurate timekeeping, it is very difficult
(if possible at all) to schedule periodic sensing tasks on IPDs
and check the freshness of obtained data.

The last challenge lies in the nature of intermittent energy
sources. Although we empirically characterize the availability
of an energy source using the periodic energy supply model,
the actual energy provision may occasionally deviate from
expected. For example, in IPDs powered by solar energy, an
object may interfere and block the sunlight in one period of
charging and cause the system to lose the power and go off.
Therefore, a scheduling method on IPDs should tolerate a
bounded degree of energy supply misbehavior.

In this work, our goal is to develop a new scheduling frame-
work and analysis to address the aforementioned challenges.

V. PROPOSED FRAMEWORK

This section presents our proposed scheduling and analysis
framework. We first introduce our runtime scheduler design,
and then analyze the energy demand and schedulability of a
given taskset under our scheduler. Finally, we derive the min-
imum charging rate required for schedulability, the maximum
time of tolerance to occasional energy supply misses, and the
recovery time from a device power loss.

A. Runtime Scheduler Design

Fig. 3 depicts an overview of how our scheduling framework
operates at runtime. In our scheduling framework, tasks that
are released and ready to run are stored in a ready queue.
When no other task is currently running, the runtime scheduler
picks a task τi that has the highest priority among all tasks in
the ready queue. Note that task priority is statically assigned
under fixed-priority scheduling and is determined dynamically
under EDF. Once the task τi to execute is found, the scheduler
checks the current energy level of the device, using the
update_charge() function (derived from (10) in Sec-
tion V-B). Each task τi has a pre-computed charging time Qi
(given in Section V-C) which is to satisfy the energy demand
of the task. As the device may already have some accumulated
energy, the scheduler computes the waiting time required to
gain enough energy (i.e., actual charging time) before the start

Ch = update_charge();

waiting_time = Qi-Ch/mɑ;

if (waiting_time > 0)

   go to charge[i];

else

   go to run_tsk[i];

set_timer(waiting_time);

activate(sleep_mode);

//after device wakes up:

go to scheduler;

run(task[i]);//non-preemptable

go to scheduler;

entry[i]

Charge[i]

run_tsk[i]

i = find_highest_priority();

go to entry[i];

scheduler

T
as

k
 i

S
c
h
e
d
u
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Fig. 3: Scheduler and task execution block diagram

of task execution. If the energy demand of the task is satisfied
by the device and no waiting is needed, the task τi starts
its execution (run_tsk[i] in the figure). Otherwise, the
scheduler sets a wake-up timer and puts the device in the sleep
mode for the required waiting time (charge[i]). Whenever
a new task is released or the device wakes up from the timer,
the scheduler performs the aforementioned procedures again,
i.e., finding the highest-priority task, checking the energy
demand, computing the waiting time, and putting the device in
sleep mode if necessary. In this way, our scheduler ensures that
each task runs with enough energy to complete its execution.

There are multiple ways to implement the waiting time and
sleep mode. It can be implemented by using the MCU’s low-
power mode with timer capabilities, e.g., LPM3 in TI MSP430,
or adding an external ultra low-power programmable RTC,
e.g., 14nA with Ambiq AM0815 RTC [26], which can be
powered by harvested energy and wake up the MCU by an
interrupt. In the latter case, the MCU can be put into a deeper
low power mode, e.g., LPM4 in MSP430, since the MCU’s
clock sources and timers can be turned off. In either case, the
device still draws some power although the amount is much
smaller than the active processing power. This will be taken
into account by our analysis.

B. Energy Demand and Supply Analysis

We categorize the sources of discharging into three types:
decaying, processing, and waiting. First, decaying occurs when
the device is not receiving any energy from the energy source
and the MCU is turned off. In this case, since the circuit is
not ideally open circuit, by considering the parallel equivalent
resistor in the capacitor, the device gradually loses some
energy. Secondly, processing occurs during the time when
the MCU is turned on and is executing tasks. Lastly, waiting
happens when the MCU is turned on but is put into sleep
(low-power) mode. When the device is being charged, the
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difference between charging and discharging would affect the
actual voltage of the device. It is worth noting that the waiting-
induced discharging is not considered in prior work [10], but
we explicitly model it since the device cannot indefinitely wait
in sleep mode in reality. Fig. 4 shows the transition of different
discharging modes.

For simplicity, we assume all the discharging rates to be
linear. Due to the fact that the CPU frequency of the MCU
remains fixed, the task execution time Ci is independent of the
supply voltage. Hence, we use mY , mP , and mW to denote
the discharging rates of decaying, processing, and waiting,
respectively. During the waiting time, the system consumes
some energy but the energy reception from the energy source is
assumed to be higher than the energy consumption in waiting
time. In other words, the capacitor voltage can increase in
waiting time if the energy source is available. This is true for
most commercial MCUs since the power consumption in low-
power mode is orders of magnitude lower than that in active
mode, e.g., 0.4µA vs. 100µA in MSP430 [27].

The charging rate of the device can also be approximated to
be linear by a slope of mc, where mc is calculated based on (3)
by substituting V0 with Von, which is the power-on threshold
of the device, and V with Vmax, which is the maximum
voltage that the capacitor can hold based on its specifications.
Therefore, the charging slope is given by:

mc =
Vmax − Von

CRp

2 Ln
(
PRp−V 2

on

PRp−V 2
max

) (7)

Thus, the worst-case voltage accumulation during each
charging period, Tc, can be calculated as:

∆V =
mcCc −md (Tc − Cc)

Tc
×∆t (8)

where Cc and Tc are the charging time and charging period
of the energy source, respectively, md = max{mW ,mY } is
the worst-case discharging rate, and mW and mY are the
discharging slope of voltage drop during waiting and decaying
time, respectively. We consider an accumulation rate to be

ma =
mcCc −md (Tc − Cc)

Tc
(9)

Therefore, the minimum voltage of the capacitor at time t with
n periodic tasks can be calculated as:

Vcap (t) = mat−
n∑
i=1

(⌊
t

Ti

⌋
+ si

)
CimPi + V0 (10)

where Ci, Ti, and mPi are the worst case execution time, the
period, and the processing discharging rate of a task τi. The
runtime variable si ∈ {0, 1} indicates if τi’s last released job

for its period at time t has been executed or not. Hence, si
is set to 0 at the beginning of each period and to 1 when the
task finishes execution for that period. In (10), V0 is given by

V0 = Von − (Tc − Cc)×md (11)

where Von is the power-on threshold. Although we consider
charging to periodic, the charging can happen at any time
during its period. In the worst-case scenario, which we call
back-to-back discharging, during an interval of 2 ·Tc, charging
may happen at the beginning of the first Tc period while the
next charging may happen at the end of the second Tc period.
The (Tc − Cc) × md term in (11) is to consider the effect
of this back-to-back discharging when calculating the voltage
of the device from (10). Equations (10) and (11) are used in
our runtime scheduler shown in Fig. 3 to estimate the current
voltage of the capacitor (i.e., device energy level) at time t.

C. Schedulability Analysis

We first define the necessary condition for a taskset Γ
containing n tasks when system parameters are known.

Lemma 1: The taskset is not schedulable if the following
condition is not met (necessary condition):

ma ≥
n∑
i=1

Ci
Ti
×mPi (12)

Proof: Consider the hyperperiod Th of the taskset, which
is the least common multiple of all task periods. The energy
reception from the energy source in one hyperperiod can
be calculated as ma × Th. On the other hand, the energy
consumption of the taskset during one hyperperiod can be
calculated as

∑n
i=1

Th

Ti
CimPi . Due to the fact that the energy

reception during one hyperperiod should be always bigger or
equal to the energy consumption of the taskset, the equation
can be easily obtained.

In order to capture the energy demand of each task τi, we
define the charging time, Qi, as follows:

Qi =
(mPi −ma)× Ci

ma
(13)

Since charging can happen while the task is running, we
consider mPi − ma as the energy consumption rate during
task execution. This charging time Qi is the maximum time
the task has to wait before execution. At runtime, the actual
waiting time can be shorter than Qi as the system may already
have a non-zero amount of accumulated energy, as discussed
in Section V-A. It should be noted that Qi can be negative,
which means the discharging rate of the task can be lower
than the charging when ma > mPi. For example, if the RFID
charger is very close to an RF-powered device, the device
can have a positive net energy gain even when it is executing
some tasks, but at a slower rate than when the device is in
sleep mode.

For schedulability analysis, the charging time of a task τi
can be considered as a preemptable execution segment of Qi
that precedes the non-preemptable execution segment of Ci.
The reason the charging segment is preemptable is that it can
be interrupted at any time by higher-priority tasks without
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Fig. 5: Active level-i example with 3 tasks.

causing data consistency or forward progress issues. Based
on this modeling of charging and execution segments, we
derive schedulability analysis in our framework with both
fixed-priority and EDF policies.

1) Fixed-Priority Scheduling: For a system under non-
preemptive fixed-priority scheduling with no energy restric-
tion, it is known that the schedulability of a task τi can be
determined by using the notion of the level-i active period [28],
which is a time interval that contains only the active jobs of a
task τi and its higher priority tasks. Fig. 5 shows an example
of task execution for 3 tasks of τ1 = (1, 3, 3), τ2 = (0.5, 4, 4),
and τ3 = (2, 6, 6) where tasks are ordered based on priority,
i.e., τ1 has the highest priority. As shown in the figure, the
active level-3 of the example taskset can be measured as 5
seconds.

Theorem 1 (from [28]): The longest level-i active period of
a non-preemptive task τi can be computed using the following
recurrent relation:

Lk+1
i = Bi +

∑
h:πh≥πi

⌈
Lki
Th

⌉
Ch (14)

where Bi is the blocking time due to lower priority tasks and
can be calculated as

Bi = max
l:πl<πi

{Cl} (15)

To determine the worst-case response time of the task τi, it
is sufficient to consider the response times of jobs during the
longest level-i active period. The first term in (14) captures
the delay that occurs when the execution of a lower-priority
task prevents a higher-priority task from execution due to the
nature of non-preemptive scheduling. For example, at time 3
in Fig. 5, τ1 is blocked by τ3 for 0.5 time units. The second
term of the equation captures the delay caused by the execution
of higher-priority tasks. For example, at time 1, τ2 executes
ahead of τ3 due to its higher priority. It is worth mentioning
that, due to non-preemptive scheduling, scheduling decisions
are made only when the previous task completes execution.
More details of the theorem can be found in [28].

We extend the conventional non-preemptive fixed-priority
schedulability test [28] in order to take into account the energy
requirements of intermittently-powered tasks. However, the
charging time Qi cannot be directly added as an additional
active workload to the level-i active period because Qi may be
negative for certain tasks. Having a negative execution time,
i.e., Qi < 0, violates the assumptions of the schedulability

analysis and leads to a failure in finding critical instants in
the level-i active period. Hence, to address this problem, we
use Q+

i = max(Qi, 0) in our analysis. This is safe since it
means that tasks with Qi < 0 do not need any charging prior
to their execution, but introduces pessimism in the analysis as
possible surplus energy cannot be captured exactly. Based on
this discussion, we give the following lemma.

Lemma 2: The level-i active period of a task τi with
charging time Qi can be computed recurrently by:

Lsi = Bi +
∑

h:πh≥πi

⌈
Ls−1
i

Th

⌉ (
Ch +Q+

h

)
(16)

The iteration in (16) starts with L0
i = Bi+Ci and stops when

Lsi = Ls−1
i or Lsi ≥ TH where TH is the hyperperiod of the

taskset.
Proof: The proof is straightforward and similar to that

in [28] for Theorem 1. The only difference with the regular
non-preemptive task analysis mentioned in Theorem 1 is the
term

∑
h:πh≥πi

⌈
Ls−1

i

Th

⌉
Q+
h , which is to consider the additional

delay caused by charging time required for the task itself
and its higher priority tasks. This term gives an effect of
introducing an artificial task τ ′h to the taskset, which has the
same priority as its original counterpart τh but runs for the
execution time of Q+

h .
Theorem 2: A taskset Γ containing n tasks with energy

constraints and arbitrary release offsets is feasible in our
scheduling framework if

∀i ≤ n,Ri ≤ Di (17)

where Ri is the worst-case response time of τi given by

Ri = max
k≤Ki

{Fi,k − (k − 1)Ti} (18)

where Ki is the number of jobs of τi in the longest level-i
active period, given by

Ki =

⌈
Li
Ti

⌉
(19)

and Fi,k is the finishing time of the kth job of the task τi in
the level-i active period, given by

Fi,k = Si,k + Ci (20)

In the above equation, Si,k is the starting time of the kth job
of τi and can be computed recurrently as follows:

Ssi,k = Bi + (k − 1)Ci +
∑

h:πh>πi

(⌊
Ss−1
i,k

Th

⌋
+ 1

)
Ch + νsi,k

(21)
where Bi can be obtained from (15). νsi,k is the charging time
required for the kth job of τi which is calculated at each
iteration by

νsi,k = k ×Q+
i

∑
h:πh>πi

(⌊
Ss−1
i,k

Th

⌋
+ 1

)
Q+
h (22)

Proof: The proof is similar to the starting time calculation
for non-preemptive tasks in the conventional analysis [28], but
considers additional terms to capture the energy requirements
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of tasks. Under non-preemptive scheduling, the worst-case
response time of a task does not necessarily occur in its
first job due to the scheduling anomaly, which can be caused
when the higher-priority jobs arrived during the execution of a
lower-priority task are pushed to a later time and cause larger
delay to its successor jobs. Thus, for a task τi, the response
time of all Ki jobs during the level-i active period should be
calculated and the largest one should be selected as the worst-
case response time, as done in (18) and (19). The starting
time calculated in (21) is similar to that in [28], except for
νsi,k which is the delay caused by charging of the jobs of the
task under analysis and its higher-priority tasks.

Theorem 2 is a necessary and sufficient condition for the
schedulability of a taskset if ∀Qi ≥ 0. Otherwise, i.e., ∃Qi <
0, the theorem is a sufficient condition. In addition, it is worth
noting that, unlike [10], our analysis holds for arbitrary release
offsets so it can be used when the release offsets of tasks are
unknown or change after recovery from a power loss.

2) Earliest Deadline First: Unlike the fixed-priority
scheduling case, it is not straightforward to compute the worst-
case response time of a task under EDF. Hence, we will first
transform our scheduling problem to a preemptive scheduling
problem, and then analyze schedulability by using the classical
utilization bound.

Lemma 3: The scheduling problem of a non-preemptive
taskset Γ in our framework can be transformed to that of a
conventional preemptive taskset with a shared resource in the
following steps.
• Create a mutually-exclusive resource r protected by a

lock. Hence, only one task can access r at a time.
• For each task τi ∈ Γ, create a new task τ ′i that contains

a normal preemptive execution segment of Q+
i followed

by a critical section segment of Ci.
• Make the critical section segments of all tasks access the

same shared resource r. Use a real-time synchronization
protocol like Stack Recourse Policy (SRP) [29] to ensure
that each task can be blocked by at most one critical
section segment.

• Replace each task τi ∈ Γ with its counterpart τ ′i .
Proof: The proof is intuitive considering that (i) the

charging time of the original task τi matches the normal
execution segment of the transformed task τ ′i as both are
scheduled preemptively from the analysis point of view, and
(ii) the execution time of τi matches the critical section of τ ′i as
they both can block higher-priority tasks. It is worth noting that
this transformation does not introduce any pessimism since
it essentially changes only the names of execution segments
(charging time to normal segments and execution time to
critical sections) and the actual schedule of tasks remains
unchanged.

Based on the above lemma, we can check the schedulability
of intermittently-powered tasks under EDF as follows.

Theorem 3: A taskset of n tasks ordered by relative dead-
lines, i.e., ∀i, j ≤ n, i ≤ j → Di ≤ Dj , is schedulable in our
scheduling framework with the EDF policy if

∀k = 1, ..., n,

k∑
i=1

(
Ci +Q+

i

Di

)
+
Bk
Dk
≤ 1 (23)

where Bk is the blocking time of a task τk given by

Bk = max
j:Dj>Dk

Cj (24)

Proof: According to the proof in [29], a taskset of n
tasks under EDF with the Stack Resource Policy (SRP) is
schedulable if

∀k = 1, ..., n,

k∑
i=1

(
Ci
Di

)
+
Bk
Dk
≤ 1 (25)

By considering Lemma 3, the charging time of each task τi
can be modeled as a critical section segment of its preemptable
counterpart. Hence, the utilization of τi is changed to Ci+Q

+
i

Di

by adding the charging time. The blocking time remains the
same as in SRP since higher-priority tasks can be blocked by
at most one non-preemptive execution of lower-priority tasks.
Therefore, (25) can be easily extended to (23).

3) Sporadic tasks: Sporadic tasks are very common in
real-time systems. We show that the proposed scheduling
framework and analysis hold for sporadic tasks as well.

Theorem 4: By capturing the minimum inter-arrival time
of a sporadic task τi as Ti, the analysis presented for periodic
tasks can be used to check the schedulability of sporadic tasks.

Proof: For any task with Q > 0, the proof is straightfor-
ward since any late arrival of a task does not have any adverse
effect on the starting time of other tasks. However, since Q
can be negative, one may raise the following question: Can
any late arrival of a higher-priority task with a negative Q
introduce an additional delay to the starting time of a lower-
priority task which has a positive Q? The negative Q of a
higher-priority task may reduce the required charging time
of other tasks and thus let them be ready to execute earlier
than expected. However, given the definition of Q in (13) and
mP > 0, it always holds that Qh > −Ch for any task τh,
meaning that the amount of cumulative interference from the
higher-priority task (charging time and execution time) can
never be negative and it is safely captured by the Q+

h term in
our analysis. Hence, the proof is complete.

D. Uncertainties in Energy Supply

When IPDs are deployed in a real environment, energy
sources may not strictly follow the model and may not be
always available at expected time. Although our periodic en-
ergy supply model is more flexible to capture the intermittent
availability of energy than the exact arrival patterns used in
prior work [10], the problem still exists and makes the real-
time scheduling of IPDs more challenging. This subsection
presents how an IPD controlled by our framework can deal
with uncertainties in energy supply. We first derive an upper
bound on the energy charging rate for schedulability, and then
analyze the tolerance to occasional energy supply misses and
the recovery time from a power loss.

1) Bounding Charging Rate: The schedulability tests pre-
sented in Section V-C analyze if a taskset is schedulable when
a specific charging rate is given. On the other hand, here we
find a sufficient condition on the charging rate for a given
taskset. Specifically, our goal is to obtain the least upper bound
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(minimum) on the charging rate, Mmin, which implies that a
taskset is guaranteed to remain schedulable under the proposed
scheduling framework as long as the charging rate of Mmin

or higher is provided at runtime. To do so, we first give the
following lemma.

Lemma 4: The lower bound on the charging rate, Ml, is
given by

Ml =

n∑
i=1

Ci
Ti
×mPi (26)

In other words, the taskset is not schedulable if the charging
rate ma is lower than Ml (necessary condition).

Proof: This holds due to (12).
We also find a loose upper bound on the charging rate, Mu.
Lemma 5 (from [29], [30]): A taskset of n tasks where

all tasks have relative deadlines equal to their periods is
schedulable if

n∑
i=1

(
Ci
Ti

)
+ max

i≤n

{
Bi
Ti

}
≤ U(n) (27)

where U(n) = n(21/n − 1) for Rate Monotonic (RM) and
U(n) = 1 for EDF scheduling.

By extending Lemma 5 with charging tasks, we have
n∑
i=1

Ci +Q+
i

Ti
+ max

i≤n

{
Bi
Ti

}
≤ U(n) (28)

Let us define two subsets of a taskset: Γq = {τq | mPq >
mk
a} and Γr = {τr | mPr ≤ mk

a}. Then, by substituting Qi
with (13), we can rewrite the equation (28) as∑

i:τi∈Γq

mPiCi
maTi

+
∑

i:τi∈Γr

Ci
Ti

+ max
i≤n

{
Bi
Ti

}
≤ U(n) (29)

Then, we can rewrite ma as

ma ≥
∑
i:τi∈Γq

mPiCi

Ti

U(n)−
(∑

i:τi∈Γr

Ci

Ti
+ maxi≤n

{
Bi

Ti

}) (30)

Based on Lemma 3 and Lemma 5, the loose upper bound
on the charging rate, Mu, can be found iteratively using
Algorithm 1. The taskset Γ is always schedulable under the
proposed framework if the charging rate provided to the device
is higher than or equal to Mu.

Although Mu is a safe condition to test schedulability, it is
not a tight bound. The least upper bound Mmin can be found
by a binary search between the two bounds, Mu and Ml, and
by checking the schedulability test using (16) to (23) for each
iteration of the search.

2) Tolerance to Occasional Energy Supply Misses: Based
on the least upper bound charging rate, Mmin, we find the
maximum degree of tolerance to occasional energy supply
misses if ma > Mmin.

Lemma 6: Consider the periodic energy supply with the
charging time of Cc and the period of Tc. After Nc consecutive
period of successful charging, the IPD can tolerate up to Nm
periods of charging misses where

Nm
Nc
≤ ma −Mmin

md +Mmin
(31)

Algorithm 1 Least upper bound on charging rate
1: k = 1
2: mk

a = Ml . Ml is obtained by Eq. (26)
3: mk+1

a = 0
4: while mk+1

a < mk
a do

5: Γq = {τi | mPi > mk
a}

6: Γr = {τi | mPi ≤ mk
a}

7: if U(n)−
∑
i:τi∈Γr

(Ci/Ti)−maxi≤N {Bi/T i} > 0 then
8: Compute mk+1

a by Eq. (30)
9: Mu = mk+1

a

10: else
11: Mu = maxi≤n{mPi}
12: break
13: end if
14: k = k + 1
15: end while
16: return Mu

Proof: If Nm periods of charging misses happen after
Nc consecutive periods of charging, the cumulative amount
of charging during the Nm + Nc periods can be calculated
as NcTcma − NmTcmd, which should be higher than the
minimum charging requirement of the tasks during that time
which is (Nm +Nc)Tc ×Mmin. Therefore

NcTcma −NmTcmd ≥ (Nm +Nc)Tc ×Mmin (32)

By simplifying the above equation, (31) can be derived.
3) Recovery Time from Device Power Loss: When the en-

ergy source is not available for a long time, the device powers
off as its voltage level drops below the power-off threshold. To
recover from such a power loss, the device may need a long
time to accumulate enough energy to start scheduling tasks
again. Knowing this recovery time is important because, even
after the energy source comes back, the device may not be
able to turn on for multiple charging periods.

Lemma 7: Consider tm, which is the time interval from
when the device powers off to when the periodic energy supply
comes back. The recover time tr from when the energy supply
is back until the device powers on is given by

tr =
min {(tm + Tc − Cc)mY , Voff}+ Von − Voff

mcCc −mY (Tc − Cc)
× Tc

(33)
where mY and mc are the decaying and charging rates,
respectively, and Voff is the power-off threshold of the device.

Proof: Even after the device turns off, it continues
to discharge at the rate of mY until the voltage decays
from Voff to zero. The maximum duration of absence of
the energy source can be extended to tm + (Tc − Cc)
due to the back-to-back discharging explained in Sec V-B.
Therefore, the voltage drop from Voff is min{(tm + Tc −
Cc)mY , Voff}, and the voltage needed to turn on the device
is min {(tm + Tc − Cc)mY , Voff}+ (Von − Voff ). After the
energy source becomes available, the device starts charging at
the rate of mcCc−mY (Tc−Cc)

Tc
. Thus, tr can be found from (33)

and the lemma is proved.

VI. IMPLEMENTATION

This section describes the hardware and software implemen-
tations of our proposed framework. For experiments on real
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Fig. 6: R’tag and Sensor board

hardware, we developed an RFID-based energy harvesting tag
device, called R’tag. It follows the design of WISP [8] and
has the same MSP430 MCU, RF circuits, and antennas. In
addition, we integrated the tag with extra external I/Os that can
be used for ADC reading for analog and digital measurements.
Furthermore, our device is made available to add a large
supercapacitor that could be used to store enough energy to
run the device for extended time.

For the sensing purpose, we designed a pluggable sensor
board that can be mounted on R’tag and measure high re-
sistance values generated by chemiresistive sensors which are
widely used in various sensing applications. It is also equipped
with Bosch BME680, an integrated environmental sensor that
can measure temperature, pressure, humidity, and total volatile
organic compounds in the air. Both R’tag and the sensor board
are shown in Fig. 6.

We used an Impinj Speedway Revolution R420 UHF RFID
reader that can generate up to 30dBm power to charge the tag.
The Ethernet interface is used to connect the RFID reader to
the PC to control the power generation of the RFID reader and
adjust the RFID setting to generate the desired energy rate. We
also used an RFMAX S9028PCL polarized directional antenna
which has the transmission gain of Gs = 8dBi.

The proposed scheduler is implemented in C language
on our designed prototype. The data privatization buffer for
task execution [3] is adopted to ensure data consistency and
forward progress of the program in case of unexpected power
loss. Based on our design, the program running on the device
consists of multiple tasks that are non-preemptive. Each task
has a separate predefined energy consumption rate which is
assigned based on the worst-case energy consumption rate
measured in multiple runs. The implemented scheduler keeps
track of the energy and manages when to run the tasks so
that the schedulability of the taskset as well as timekeeping
is guaranteed. Based on our design, task execution is atomic
and non-preemptable. Thus, a power loss in the middle of
a task’s execution causes the task to restart its execution in
the next power-on cycle. The results of each completed task
are stored in the non-volatile memory, i.e. FRAM of MSP430
MCU, using the double-buffering method [3].

VII. EVALUATION

We first conduct schedulability experiments to evaluate the
performance of our scheduling framework over prior work. We

then present real system experiments using our implementation
to demonstrate its effectiveness.

A. Analytical and Simulation Experiments

As discussed in Section II, the only and latest prior work
that provides a real-time scheduler for IPDs is the Celebi [10]
but it assumes preemptive tasks. Hence, in order to compare
our scheduling method with Celebi in various scenarios, we
implemented the Celebi scheduler such that it allows pre-
emption at the boundary of jobs to deal with non-preemptive
tasks. Due to the low processing power of the CPU in most
IPDs as well as the limitation of power source and storage
capacitor, computation tasks that can be executed on IPDs
are considered to be small, e.g., usually less than a second.
Furthermore, when the number of tasks increases, the overall
feasible utilization of the system may decrease dramatically.
In our evaluation scenarios, since the utilization of the taskset
is chosen randomly and can be as high as 90%, the number of
tasks cannot be very high. Due to the same reason, in previous
work such as [12] and [10], only up to 3 and 10 tasks are
considered, respectively.

In all experiments, the charging rate is fixed to 3, and
deadlines are set equal to task periods (Di = Ti). The
experiments for simulation and analysis are conducted in
MATLAB on a workstation equipped with an Intel 4.2GHz
Core i7 CPU with 16GB of RAM.

We first evaluate the effect of taskset utilization on schedu-
lability. In this experiment, the taskset utilization is chosen
from 0.1 to 0.9 in 0.1 steps. For each taskset utilization, 1000
tasksets are generated and the average schedulability ratio of
the total 1000 tasksets is reported. The number of tasks, the pe-
riod, and the discharging rate of each task are chosen randomly
from 2 to 20, from 1s to 60s, and from 1 to 10, respectively (all
in integer). To generate task execution time, task utilization is
first obtained using the UUniFast method [31], then multiplied
by the task period, and finally rounded to the nearest positive
integer, i.e., Ci = max(bTi · Uie, 1). The schedulability of
each taskset is checked for both our method and Celebi with
RM and EDF. Unlike our work, Celebi does not provide an
analytical method to test schedulability; instead, it generates
a schedule for one hyperperiod and checks if there is a
deadline miss or not. To prevent excessive test time when the
hyperperiod is long, we limit the taskset generation of Celebi
to one hyperperiod or 10000s, whichever is smaller. Also, for
convenience, the initial release offset of each task is set to
zero. This could be advantageous for Celebi as it does not
test all possibilities, but was an inevitable choice to conduct
experiments in a reasonable time. For example, a taskset
with 10 tasks generated by the above parameters can have
a hyperperiod as large as 5.4× 1016! In case of our method,
we use the schedulability analysis given in Section V-C.

Fig. 7 shows the schedulability ratio as the taskset utiliza-
tion increases. Our proposed method significantly outperforms
Celebi, with as much as 60% higher schedulability ratio.
The primary reason why the proposed method yields such an
improvement is that it faithfully models the energy-harvesting
process of real IPDs [2], [8], [9], where energy harvesting and
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Fig. 7: Scheduler performance for different CPU utilization
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Fig. 8: Scheduler performance for different discharging rate
percentages

task execution are not mutually exclusive. Hence, the proposed
method allows more time to be available for task execution and
ensures not to lose opportunities for charging.

Secondly, we investigate the impact of a discharging rate on
schedulability. In this experiment, tasks are divided into two
categories: high and low energy demands. The discharging rate
is randomly chosen from 8 to 10 for high energy demand tasks,
and from 1 to 3 for low energy demand tasks. Fig. 8 depicts the
schedulability ratios as the percentage of low energy demand
tasks per taskset increases. All other parameters remain the
same as the previous experiment, but the total number of
tasks per taskset and the taskset utilization are fixed to 5
and 50%, respectively. As shown in the figure, the proposed
method gives much higher schedulability than Celebi under
both RM and EDF, especially when the percentage of low
demand tasks is high. EDF tends to perform better than RM
because, as proved in [32], EDF is the optimal scheduler
even for non-preemptive task scheduling as long as work-
conserving schedulers are considered.

Thirdly, we evaluate the computational cost to test schedu-
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Fig. 9: Computational cost to check taskset schedulability

lability under our proposed method and Celebi. For our
method, the running time of the schedulability analysis given
in Section V-C is measured and rounded up to the nearest
integer value in seconds. In case of Celebi, generating a
schedule for the entire hyperperiod is not practically doable
when the number of tasks is large. Therefore, we take the
following approach for Celebi: (i) if the hyperperiod of the
taskset is below 20000s, a schedule is generated for the
entire hyperperiod and the runtime is measured, and (ii)
otherwise, we estimate the runtime of Celebi based on the
3-degree polynomial curve fitting, which is derived from the
measurements of time duration of 1000s, 2000s, 5000s, and
10000s for a given number of tasks. Testing with a random
sample of tasksets, we found that the error of the curve
fitting was negligibly small. Fig. 9 shows the results. The
schedulability test runtime of our method is extremely small
(less than a second in all cases), but that of Celebi increases
exponentially with the number of tasks. The reason why Celebi
suffers significantly is that the time to generate a schedule
depends not only on the length of the hyperperiod but also
on the total number of jobs released during the hyperperiod.
From our estimation, a taskset with 5 or more tasks would
take more than a decade on average in the tested machine
to find the schedulability under Celebi. The large size of the
generated schedule is also a problem since IPDs can store only
tens of KBs in RAM, e.g., up to 64KB in MSP430 [27].

Lastly, we compare the results of our proposed analysis with
those from simulation. For simulation, the initial release offset
of each task is set to zero by default. If there is a task failed
by the analysis, then we find a lower-priority task causing
the largest blocking time to the failed task and make that
lower-priority task starts 0.1s earlier in simulation (so that
the failed task gets the blocking time). Taskset utilization is
chosen randomly from 0.1 to 0.9. The other parameters remain
the same as in the previous experiments. Fig. 10 shows the
results. The deviation of the analysis from simulation is due
to the pessimism of the analysis, especially when tasks have
discharging rates lower than the charging rate of the device.
In addition, the release offsets used for simulation might have
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not led to the worst possible case. Nonetheless, the degree
of pessimism is about 5% for both RM and EDF, which is
small compared to the improvement our method has made
over Celebi (up to 60% as discussed before). Therefore, we
conclude that our proposed method achieves high efficiency
and practicality for real-time task scheduling on IPDs.

B. Real System Experiments

Fig. 11 shows the experimental setup used for our experi-
ments. The Impinj RFID reader is connected to the computer
via an Ethernet cable for data logging and reader control. The
R’tag device is located some distance away from the reader’s
antenna and a 100 µF capacitor is used for the energy buffer
of the device. Our sensor board is attached to the R’tag and a
10 MΩ resistor is connected to the sensor board as a pseudo
chemiresistive sensor. To check task scheduling behavior and
device energy level, we instrumented our scheduler code to
produce digital output and used an oscilloscope to measure
them along with the capacitor voltage. Specifically, we used
one I/O pin to show task execution intervals, one pin for charg-
ing intervals, and one pin for capacitor voltage monitoring.
Our experimental setup is to demonstrate the effectiveness of
the analysis and to verify if a real-world scenario follows the
analysis. The setup is similar to previous work [20], [22] in
that it uses a fixed distance to the energy source.

TABLE I: Task parameters

C (ms) T (s) D (s) π mP (mV/s)
τ1 32 2 2 4 4400
τ2 198 3 3 3 4320
τ3 112 6 2 2 5500
τ4 387 12 12 1 4000

The taskset we used consists of a mix of sensing and
computation tasks. Two computation tasks, τ1 and τ2, per-
form pure CPU processing. Two sensing tasks, τ3 and τ4,
perform high resistance measurement (τ3) and interface with
the BME680 sensor for temperature, pressure, humidity, and
gas data acquisition (τ4). The sensing and computation tasks
follow the read-execute-write semantics [24], so there is no
need for synchronization or dependency checking at runtime,
as discussed in Section III-C. Task priorities are statically as-
signed by RM and their parameters are shown in Table I. Based
on Lemma 4 and Algorithm 1, we have Ml = 658 mV/s and
Mu = 1168 mV/s for this taskset, and with a binary search,
we find Mmin = 587 mV/s. Due to some energy waste of
I/Os used for experimental purposes, we set ma = 600 mV/s,
which satisfies schedulability since ma > Mmin. Then, using
the equations from (6) to (9), we find that the desired distance
from the reader to R’tag is 18 cm when charging constantly.

Fig. 12a depicts the task execution and charging intervals
and the capacitor voltage of the device during one hyperperiod.
Although the tasks are recognizable by their execution times,
for the ease of understanding, we illustrate per-task execution
in Fig. 12b with arrows indicating job arrival times. As can
be seen, when a new job arrives during the charging interval,
charging stops promptly (the charging pin goes down) and
the scheduler selects the highest-priority task to execute. If
the energy demand is not enough, the scheduler lets charging
continue and configures the wake-up timer for later execution
(e.g., at time 3, 6, and 8). In addition, since task execution
is non-preemptive, and lower-priority tasks may block higher-
priority tasks (e.g., at time 4, τ2 blocks τ1) and this blocking
time can be captured by our analysis. In this experiment,
the average and the maximum difference between the es-
timated voltage by (10) and the actual voltage measured
from an oscilloscope are 0.21V and 1.17V, respectively. The
difference exists due to the fact that the voltage estimation
equation considers the worst-case combinations of charging
rate, voltage reduction rate and execution time of tasks, but
they rarely occur altogether in real-world scenarios. Despite
some pessimistic estimations, the overall results show that our
scheduling framework works on a real platform as designed
and the runtime behavior is predictable by analysis.

VIII. DISCUSSIONS

Since most IPDs developed in the literature only consider
a single capacitor per device, our focus in this paper is on
providing a real-time scheduling framework for such devices.
However, our work can be extended to IPDs utilizing more
than one capacitor bank, e.g., Capybara [2]. To do so, one
can divide tasks into multiple groups based on their energy
requirements and let each group be served using different

12



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

V
o

lt
ag

e 
(V

)

Time (s)

Charging Interval Task Execution Capacitor Voltage

0

1.5

3

4.5

6

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

Time (s)

τ1

τ2

τ3

τ4

Charging

(a) Oscilloscope measurements: blue, red, and green lines are charging, task execution, and capacitor voltage, respectively

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

V
o

lt
ag

e 
(V

)

Time (s)

Charging Task Execution Task Capacitor Voltage

0

1.5

3

4.5

6

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

Time (s)

τ1

τ2

τ3

τ4

Charging

(b) Per-task execution and charging intervals reconstructed from the oscilloscope measurements

Fig. 12: Task execution behavior of R’tag under the proposed scheduler

capacitor banks. Thus, each group would have a different
charging rate that should be considered when calculating
Qi. Our analysis can then be applied to the entire taskset
without any modification. The problem of assigning tasks to
different capacitors is analogous to the multiprocessor task
allocation problem, which can be solved by using bin-packing
heuristics, e.g., tasks can be assigned to capacitors based on
their utilization.

In our implementation, a supercapacitor was used but it is
not mandatory for our work. Even a small capacitor can be
used as long as it is capable of holding enough charges to
schedule a given taskset (Vmax and capacitor charging time
affect ma and consequently affect the schedulability of the
taskset). Of course, for an energy source with a long charging
period, or for tasks with very long atomic execution and
high energy demand, the use of a supercapacitor would help
since the maximum voltage of the capacitor is limited and the
required energy can only be served by either having a capacitor
with higher maximum voltage or increasing the size of the
capacitor. However, a larger capacitance does not necessarily
improve the schedulability of the system since the time to
reach a desired voltage (tcharging in (3)) is affected by the
capacitor size C.

The runtime scheduler of our framework estimates a lower
bound on the current voltage of the capacitor. Although the
accuracy of the voltage estimation does not affect taskset
schedulability, improving accuracy could help achieve a better
performance at runtime than the result predicted by analysis.
For example, if a programmable supply voltage supervisor
(SVS) is available, the wake up voltage threshold can be set
to the desired value and the signal generated from SVS can
be used to wake up the device. Therefore, there is no need to
estimate the voltage by equations and to set a wake-up timer.

However, since a programmable SVS is not widely available,
the value of our voltage estimation still holds.

Our periodic energy supply model is motivated by [11]
where the RFID charger can move and charge devices period-
ically. Although our model may not cover all types of energy-
harvesting sources, it can be applied to unpredictable energy
sources, like wind and vibrations, if their stochastic models are
available and the charging rate can be linearized, even though
it might be pessimistic. Furthermore, for an energy source
that has a set of distinct charging characteristics, one can use
our model to build a multi-mode IPD system. Consider solar
energy as an example. The amount of harvested solar energy
varies in the morning, afternoon, and night of the day. In this
case, different charging modes can be considered, and for each
mode, a different energy accumulation rate can be calculated
and the schedulability of the taskset can be analyzed for each
of the modes separately by our analysis.

Lastly, although we have primarily considered the system
where all tasks have to meet their deadlines, our work can
be applied to imprecise computing-based IPDs such as Zy-
garde [19]. Consider a set of imprecise-computing tasks, each
of which is composed of mandatory and optional subtasks.
As their names imply, the mandatory subtasks have to execute
by deadlines, but the optional tasks may execute only when
possible since their execution does not affect the functional
correctness of the system. Then, our analysis can be applied to
the mandatory subtasks to check their real-time schedulability.
The optional subtasks can be ignored from analysis since their
execution can be discarded if the energy is scarce.

IX. CONCLUSION

In this paper, we proposed a new task scheduling framework
for periodic real-time task execution on intermittently-powered
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devices (IPDs). Our runtime scheduler design ensures to
accumulate enough energy for the safe execution of tasks
with indivisible atomic operations. It also enables timekeeping
in the presence of intermittent power losses. For analyzable
guarantees, our framework captures intermittent energy har-
vesting as a periodic supply model, provides schedulability
tests for both fixed-priority and EDF scheduling, and derives
an upper bound on the minimum charging rate, tolerance
to occasional energy supply misses, and the recovery time.
In our experiments compared to the state of the art, the
proposed framework achieved a significant improvement in
schedulability (e.g., up to 60% higher schedulability ratio)
and verified the schedulability of a given taskset at a much
lower computational cost (e.g., taking less than a second
while prior work cannot finish in a day). The real system
experiments using our hardware and software implementations
also demonstrated the practical effectiveness of our work. For
future work, we plan to extend our scheduler to deal with
different types of external timekeeping methods and to apply
it to more complex sensing applications.
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