
Job-Class-Level Fixed Priority Scheduling of
Weakly-Hard Real-Time Systems

Hyunjong Choi†, Hyoseung Kim†, and Qi Zhu‡
†University of California, Riverside, ‡Northwestern University

{hchoi036, hyoseung}@ucr.edu, qzhu@northwestern.edu

Abstract—Many cyber-physical applications including sensing
and control operations can tolerate a certain degree of timing
violations as long as the number of the violations are predictably
bounded. The notion of weakly-hard real-time systems has been
studied to capture this effect, but existing work reveals limita-
tions for practical use due the restrictions imposed on timing
model and the high complexity of analysis. In this paper, we
propose a new job-class-level fixed-priority preemptive scheduler
and its schedulability analysis framework for sporadic tasks
with weakly-hard real-time constraints. Our proposed scheduler
employs the meet-oriented classification of jobs of a task in order
to reduce the worst-case temporal interference imposed on other
tasks. Under this approach, each job is associated with a “job-
class” that is determined by the number of deadlines previously
met (with a bounded number of consecutively-missed deadlines).
This approach also allows decomposing the complex weakly-hard
schedulability problem into two sub-problems that are easier to
solve: (1) analyzing the response time of a job with each job-
class, which can be done by an extension of the existing task-level
analysis, and (2) finding possible job-class patterns, which can
be modeled as a simple reachability tree. Experimental results
indicate that our scheduler outperforms prior work in terms of
task schedulability and analysis time complexity. We have also
implemented a prototype of a job-class-level scheduler in the
Linux kernel running on Raspberry Pi with acceptably-small
runtime overhead.

I. INTRODUCTION

The performance and stability of embedded and cyber-

physical applications depends not only on the precision of

computation but also on the physical instant at which the

output is generated [23, 24]. Since Liu and Layland’s seminal

work [28], real-time systems with hard deadlines have been

extensively studied and have shown their effectiveness in

satisfying all deadlines under any circumstance. However, in

practical systems, there are many components that are tolerant

to some deadline misses without affecting their functional

correctness, if the number of misses is predictably controlled

and bounded. This observation has motivated the development

of weakly-hard real-time systems to improve resource effi-

ciency [5], and this paper focuses on the scheduling problem

of tasks with weakly-hard constraints.

The common notation of a weakly-hard constraint is the

(m,K) form, which specifies that among any K consecutive

task instances (jobs), at most m instances can miss their

deadlines. Prior work with predictable (m,K) guarantees [5,

6, 14, 18, 20, 38] has focused on reducing the pessimism

of schedulability analysis under traditional task-level fixed-

priority scheduling, such as Rate Monotonic (RM) [28], by

making strong assumptions on task timing behavior, e.g.,

fixed phasing (initial release offset) and fixed period with no

release jitter. However, we believe that such assumptions limit

their applicability to recent cyber-physical systems that require

flexibility and adaptability. The high complexity of the existing

analysis also makes it difficult to use in runtime admission

control, which is required by systems running in a changing

environment.

Moreover, we find that task-level fixed-priority scheduling

cannot take full advantage of m permitted deadline misses in

K consecutive job executions. As an example, let us consider

a uniprocessor system with two periodic tasks. Task 1 has

(m,K) = (2, 4) with period of 11 and execution time of 6
time units. Task 2 has (4, 7) with period of 7 and execution

time of 4 units. Hence, Task 1 may miss up to 2 deadlines

in 4 consecutive jobs; Task 2 may miss up to 4 in 7 jobs. As

the total utilization of the two tasks exceeds 1, they cannot

meet their deadlines all the time. However, there may exist

a feasible weakly-hard schedule as the minimum utilization

demand to meet the weakly-hard constraints is only (6/11) ·
(2/4) + (4/7) · (3/7) ≈ 0.52.

(a) Task 1 with low priority

(b) Task 1 with high priority

Fig. 1: Dynamic failures under conventional task-level fixed-

priority scheduling

Under task-level fixed-priority scheduling, only two priority

assignments can be found for the above taskset: (1) low

priority to Task 1 and high priority to Task 2, which is

also obtainable by RM, and (2) high to Task 1 and low to

Task 2. Fig. 1 illustrates task scheduling timeline with these

two priority assignments. In both cases, the taskset falls into

241

2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)

978-1-7281-0678-6/19/$31.00 ©2019 IEEE
DOI 10.1109/RTAS.2019.00028

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 12,2020 at 17:47:16 UTC from IEEE Xplore. Restrictions apply.

a dynamic failure [17], where a task experiences more than m
deadline misses in a window of K jobs. Thus, we can conclude

that despite the very low minimum utilization demand of this

taskset, none of the task-level fixed-priority assignments yields

a feasible schedule.

In this paper, we take a completely different approach that

significantly improves the scheduling efficiency and flexibility

of weakly-hard real-time tasks. We propose a new scheduling

policy, called job-class-level fixed-priority preemptive schedul-
ing, for periodic and sporadic tasks with (m,K) constraints.

This scheduler supports arbitrary initial offsets and non-zero

release jitters. The running time of the resulting schedulability

analysis is much shorter than that of the latest work [38]

that uses mixed integer linear programming. The key to our

scheduler lies in the classification of the jobs of each task

and the assignment of fixed priority to each class of jobs.

We will show in Section IV that the proposed job-class-

level scheduling can successfully schedule the above taskset

example.

Contributions. This paper makes the following contributions:

• We propose a new job-class-level fixed-priority scheduler

for sporadic real-time tasks with weakly-hard constraints.

Specifically, our scheduler is based on the meet-oriented
classification of jobs of tasks, which effectively reduces the

worst-case temporal interference imposed on other weakly-

hard tasks.

• We present a schedulability analysis framework for weakly-

hard tasks under our scheduler. It consists of two steps: (1)

analyzing the response time of a job with each job-class,

which is done by an extension of the existing task-level

analysis, and (2) finding possible job-class patterns of a task,

which is solved by constructing a reachability tree based on

the response time of individual job-classes.

• We find the schedulability analysis of tasks with m
K ≥ 0.5

can be tested by using a single sufficient condition, without

exploring all possible execution patterns. In other words, the

time complexity of analyzing such tasks is much smaller

than that for tasks with m
K < 0.5. We show this property

with analytical and empirical results.

• We prove that our proposed job-class-level fixed priority

scheduler is a generalization of task-level fixed-priority

scheduling. We also show that our scheduling framework

can be used to upper bound the number of consecutive

deadline misses.

• Experimental results demonstrate that the proposed sched-

uler outperforms the prior work [25, 38] in both task

schedulability and analysis running time. In addition, we

have implemented our scheduler in the Linux kernel running

on Raspberry Pi with acceptably-small runtime overhead.

Organization. The rest of the paper is organized as follows.

Section II discusses prior work on weakly-hard systems. The

task model and notation used in this paper are presented

in Section III. We then propose job-class-level scheduling

in Section IV, and present our schedulability analysis in

Section V. The evaluation of our work is given in Section VI.

Section VII concludes the paper and discusses future work.

II. RELATED WORK

The notion of (m,K) constraints was first introduced by

Hamdaoui et al. [17]. They focused on reducing the probability

of timing violations with dynamic priority assignment, and

showed its positive impact in simulation. However, no analyt-

ical bound on the number of deadline misses was given. Bernat

et al. [5] formally defined weakly-hard real-time systems, and

proposed the first work on the schedulability of periodic tasks

with weakly-hard constraints under fixed-priority scheduling.

Extensions of this schedulability work have been studied,

such as for bi-modal execution [6, 35] and non-preemptive

tasks [27]. The former ones, however, assume that the initial

release offset of each task is statically fixed and exactly known

ahead of time, which is not always possible especially in

an open system. The latter assumes that all jobs have zero

release jitter. Recent work [38] relaxed these assumptions

but at the expense of high analysis complexity, e.g., taking

more than 10 minutes for 20 tasks on an Intel Xeon 8-core

processor, which makes it difficult to use for online admission

control in embedded platforms. Goossens [15] presented an

exact schedulability test for periodic tasks with zero jitter

and offset under distance-based dynamic-priority scheduling.

This is done by thoroughly enumerating all task schedules

over multiple hyperperiods and checking if there is a repeated

feasible schedule.

Weakly-hard constraints have also been studied to bound

the temporal violations of overloaded systems [19, 33, 34, 41].

They use typical worst-case analysis (TWCA), which assumes

the exact arriving patterns of task instances with occasional

overloads are given in the form of arrival curves. Variants

of TWCA have been studied for CAN bus analysis [32],

tasks with dependencies [18], tasks with varying execution

time [1, 39], budget assignment [20]. While these TWCA-

based approaches made significant contributions to weakly-

hard systems, the precise identification and description of task

arrival patterns is much harder than the use of periodic [28]

or sporadic task models [30], as discussed in [38].

Besides schedulability, preserving control stability has been

studied in the context of weakly-hard systems. Rainer et

al. [8] used weakly-hard constraints to capture the failure

of unstable feedback control systems in a deterministic way.

In [31], a state-based methodoldy is presented to analyze

the performance of a control application using weakly-hard

constraints. Frehse et al. [12] analyzed the closed-loop prop-

erties of control software based on TWCA. In [35], periodic

task instances are classified into mandatory and optional ones

based on (m,K) constraints, and only the mandatory ones

are guaranteed to complete in time. Gaid et al. [13] and

Marti et al. [29] extended this work to consider optional

instances and non-periodic execution, respectively. The (m, k)
model has been further investigated for control-schedule co-

design [10, 11, 36].

The recent work of Lee and Shin [26] focused on bound-

ing consecutive deadline misses of periodic tasks for cyber-

242

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 12,2020 at 17:47:16 UTC from IEEE Xplore. Restrictions apply.

physical systems. They classified each job of tasks based

on the number of consecutive deadline misses happened just

before its arrival, and associated this number with control

stability. While this job-level classification has inspired our

work, there are two major differences. First, our work focuses

on the (m,K) model which is a superset of the model used in

[26]. Specifically, x consecutive deadline misses are a special

case of the weakly-hard constraint (x, x + 1) in the (m,K)
form and thus can be safely bounded by our work. Second, our

work uses a meet-oriented classification which will be detailed

in Section IV.

III. SYSTEM MODEL

This paper considers a uniprocessor system where the CPU

runs at a fixed clock frequency. The system executes a taskset

consisting of N periodic or sporadic real-time tasks with

constrained deadlines.

Task model. Each task τi is characterized as follows:

τi := (Ci, Di, Ti, (mi,Ki))

• Ci: The worst-case execution time of each job of a task τi.
• Di: The relative deadline of each job of τi (Di ≤ Ti)

• Ti: The minimum inter-arrival time between consecutive

jobs of τi. If τi is a periodic task, Ti is the period of τi.
• (mi,Ki): The weakly-hard constraints of τi (mi < Ki). If

τi is a hard real-time task, mi = 0 and Ki = 1.

Each task τi can have a non-zero initial release offset oi, and

a release jitter Ji (Ji ≤ Di − Ci). The j-th job of a task τi
is denoted as Ji,j .

Utilization. To represent the resource usage and the effective

performance of a weakly-hard system, we define a set of

utilization metrics below.

Def. 1. The maximum utilization of a task τi, UM
i , is the

maximum amount of CPU resource that τi can utilize. It is
defined as UM

i = Ci

Ti
, which is in fact the same as the common

task utilization. The maximum total utilization is defined as
the sum of the maximum utilization of all tasks, i.e., UM =∑N

i=1
Ci

Ti
, where N is the number of tasks.

Note that the maximum utilization UM
i is the value that τi

can achieve when it always meets the deadline.

Def. 2. The minimum utilization of a task τi, Um
i , is the CPU

resource used by τi when it experiences the maximum deadline
misses allowed by its (mi,Ki) constraint, i.e., Um

i = Ci

Ti
×

Ki−mi

Ki
. The minimum total utilization is defined as Um =∑N

i=1
Ci

Ti
× Ki−mi

Ki
.

Each task requires at least Um
i of CPU resource to be

schedulable w.r.t. the weakly-hard constraint. Note that the

minimum total utilization should be less than or equal to 1 for

a taskset to be schedulable, i.e., Um ≤ 1.

Deadline-missed Jobs. If a job of a task misses its deadline,

there are two approaches to handle this job: (i) letting it

continue to execute beyond the deadline, and (ii) dropping (or

descheduling) it immediately. If the output of a job has some

usefulness even after the deadline, the first approach can be

considered better than the second one. Otherwise, the second

approach is more appealing as it can prevent the deadline-

missed job blocking its next job and unnecessarily wasting

CPU cycles. Therefore, this paper uses the second approach

and shows that it can be implemented on embedded platforms

with small overhead. Note that job dropping has also been used

in other real-time contexts, e.g., shared resource access [2, 4]

and mixed-criticality systems [16].

IV. JOB-CLASS-LEVEL FIXED-PRIORITY SCHEDULING

Unlike task-level fixed-priority scheduling, our work classi-

fies the jobs of each task into job-classes and assigns priorities

to individual job-classes. With this approach, a task can have

as many priority levels as the number of job-classes it has,

and the priority of each job is determined by the priority of

its corresponding job-class.

A. Meet-oriented job classification

Bernat et al. [5] discussed that weakly-hard constraints can

be categorized into four types based on the following criteria:

consecutive vs. any order, and met vs. missed deadlines. In

line with this idea, one may consider the following four

classification approaches for a job Ji,j based on the execution

results of its prior jobs: the number of previous deadlines (i)

met, (ii) missed, (iii) consecutively met, and (iv) consecutively

missed. In this paper, we specifically use a meet-oriented
classification to define a job-class.

Def. 3. A job-class Jq
i includes a job whose nearest previous

jobs have consecutively met q deadlines, where q has the range
of [0, Ki −mi] and mi ≥ 1.

The superscript of Jq
i is referred to as the index of that

job-class. Due to the range of job-class indices, any job

that follows more than Ki −mi consecutively-met deadlines

belongs to a job-class JKi−mi
i . If mi = 0, meaning that

no deadline miss is allowed, i.e., a hard real-time task, the

number of job-classes for that task is always one. Note that

a job-class is determined by the number of nearest deadlines

consecutively met. If a job follows two distinct intervals of q
and q′ consecutively-met deadlines and q is the more recent

one, this job gets the job-class index of q. More precisely,

given the k-th job of a task τi, Ji,k, its nearest previous

jobs with q consecutively met deadlines are Ji,x...y , where

x ≤ y < k and there is no other job Ji,z : y < z < k that has

met the deadline.

Each job-class Jq
i is assigned a fixed priority, which is

denoted as πq
i . Since the job-class index of a job indicates the

number of consecutive deadlines met just before its arrival,

the higher index likely means the less urgent the job is

(w.r.t. weakly-hard constraints). Therefore, we propose that the

priority of a job-class decreases monotonically as a job-class

index increases. For instance, a task τ1 with (m1,K1) = (2, 4)
can have three job-classes, J0

1 , J1
1 , and J2

1 , with their priorities

of 6, 4, and 2, respectively. More details on job-class priority

assignment will be given in Section IV-B.

243

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 12,2020 at 17:47:16 UTC from IEEE Xplore. Restrictions apply.

To better represent a sequence of job execution results, we

introduce the following two patterns: μ-pattern and C-pattern.

Def. 4 ([5, 17]). A μ-pattern represents a sequence of deadline
met and missed jobs of a task. For example, MMmMmMM, where
M and m represent a met and a missed deadline, respectively.

Def. 5. A C-pattern represents job-class indices of a sequence
of jobs released by a task with a weakly-hard constraint. For
example, 0120101, where each digit means a job-class index
used.1.

May miss or meet
Always meet

Deadline missed
Deadline met

Low High

J JJob-classes J J J J
Meet/Miss
Priorities 1 3 5 7

< After scheduling >

< Job classes >
J

Start scheduling J release

J J J JJ

J release
3 missed jobs

3 missed jobs

J J J JJ

J release

3 consecutive high priority jobs

J

J

Fig. 2: Consecutive execution of high-priority jobs under miss-
oriented job classification

Benefits of meet-oriented classification. The rationale behind

the meet-oriented job classification is that it can reduce the

worst-case interference imposed on lower-priority jobs by

modulating the execution of jobs with high priority. For

comparison, let us consider the opposite approach where a job-

class is defined by the number of deadline misses. In this miss-
oriented approach, a job-class with a higher index means more

deadlines missed previously and thus gets a higher priority.

Fig. 2 shows an example of a task τ1 with (m1,K1) = (3, 6)
under the miss-oriented approach. On the left side of the figure,

a circle indicates a job-class that always meets the deadline

due to its high priority, and a triangle indicates a job-class that

does not guarantee meeting the deadline. The task τ1 has 4
job-classes and the highest-index job-class, J3, has the highest

priority.

The right side of Fig. 2 illustrates a possible scheduling

result of the task τ1. Assume that the first three jobs of τi,
J0
1,1, J1

1,2 and J2
1,3, miss the deadline due to the low priorities

of their job-classes. Then, the 4th, 5th and 6th jobs of τ1 get

the highest job-class index, i.e., J3
1,4, J3

1,5 and J3
1,6, because

they have three missed deadlines in the window of K1 = 6
prior jobs. This results in three consecutive execution of the

highest-priority jobs of τ1, thereby resulting in consecutive

interference to the lower-priority jobs of other tasks. Under

the miss-oriented classification, it is very hard (or may be

impossible) to avoid such interference. On the other hand,

in our meet-oriented approach, such consecutive execution

of the highest-priority jobs is effectively prevented, because

once the highest-priority job meets the deadline, its next job

1If there is a job-class index greater than 9, one can use a delimiter between
each index, e.g., 0.1 · · · 11.12.13.

will be assigned a job-class with a lower priority. Hence, the

time interval between highest-priority jobs becomes longer and

other tasks likely experience less interference during their job

execution.

Bounding consecutive deadline misses. The above Def. 3

does not specify a distance from the current job to the nearest

previous deadline-met jobs. If we limit this distance to zero,

only immediately-previous jobs will be checked. For example,

for a job-class Jq
i , there will be no deadline miss allowed

between the current job and the window of q prior jobs; if a

job Ji,j misses its deadline, the job-class index of its next job

Ji,j+1 will be immediately demoted to zero, i.e., J0
i,j+1. If we

do not limit the distance, an unbounded number of consecutive

deadline misses will be allowed at each job-class. For example,

if a job of τi gets a job-class of Jq
i and its subsequent jobs

continuously miss the deadline, they all will belong to the

same job-class. Therefore, we define a miss threshold to limit

the distance and bound the number of consecutive deadline

misses at each job-class.

Def. 6. A miss threshold wi is the maximum number of
consecutive deadline misses that a task τi can experience
at any job-class Jq

i with q > 0. If a job of τi follows wi

consecutive deadline misses, this job is assigned the lowest-
index job-class J0

i . The value of wi is given by:

wi = max

(⌊
Ki

Ki −mi

⌋
− 1, 1

)

The reasoning behind this wi value is to ensure that a task τi
can have an enough number of jobs running with τi’s highest-

priority job-class, J0
i . By the definition of the miss threshold,

wi cannot be smaller than 1, and as wi goes larger, it takes

more periods for τi to regain J0
i . The way wi is determined

allows τi to run at least Ki−mi jobs with J0
i (denominator in

the equation) during Ki consecutive invocations (numerator)

when the other mi jobs all miss their deadlines.

Example. A task τi with a weakly-hard constraint (mi,Ki) =
(5, 7) is assigned 3 job-classes and a miss threshold size of

wi = 2, based on Defs. 3 and 6. Suppose that the very first

two jobs of τi have met their deadlines (τi’s μ-pattern is MM).

As a result, the job-class index of the 3rd job becomes 2, i.e.,

J2
i,3. If J2

i,3 misses the deadline (MMm), the 4th job continues

to get J2
i,4 as the number of consecutive misses is less than

the miss threshold (wi = 2). If J2
i,4 also misses the deadline

(MMmm), the task τi has reached the miss threshold and the

5th job of τi is assigned J0
i,5. On the other hand, if J2

i,4 meets

the deadline (MMmM), the 5th job is assigned J1
i,5 because the

number of nearest consecutively-met deadlines is 1 (as given

by Def. 3).

Relations to other scheduling approaches. Our job-class-

level fixed-priority scheduling model is a generalization of

the conventional task-level fixed-priority scheduling [28] and

can represent the temporal constraints of the CFP scheduling

model [26]2 that upper bounds the number of consecutive

2CFP stands for Cyber subsystem’s state-level Fixed Priority (scheduling).

244

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 12,2020 at 17:47:16 UTC from IEEE Xplore. Restrictions apply.

0 10 20 30 40 50 60 70 80 90 100
Time[sec]

T
as

k
2

T
as

k
1

J0
2,1

J1
2,2

J2
2,3

J0
2,4

J1
2,5

J2
2,6

J0
2,7

J1
2,8

J2
2,9

J0
2,10

J1
2,11

J2
2,12

J3
2,13

J0
2,14

J1
2,15

J0
1,1

J1
1,2

J2
1,3

J0
1,4

J1
1,5

J0
1,6

J1
1,7

J2
1,8

J2
1,9

J2
1,1

Completed job Missed job

Fig. 3: Execution timeline of weakly-hard tasks under job-class-level scheduling

Algorithm 1 Job-class priority assignment

Input: Γ: Taskset
1: N ← |Γ|
2: Sort τi in Γ in ascending order of deadline
3: for all τi ∈ Γ do
4: li ← Ki −mi + 1 � li: number of job-classes for τi
5: end for
6: prio←∑

τi∈Γ li � Priority to be assigned next
7: if Γ is schedulable by DM then
8: for all τi ∈ Γ do
9: � Assign the same priority to all job-classes of τi

10: for all q ← 0 to li − 1 do
11: πq

i ← prio
12: end for
13: prio← prio− 1
14: end for
15: else
16: L← maxτi∈Γ li
17: for q ← 0 to L− 1 do
18: if q > 0 then
19: Sort τi ∈ Γ in ascending order of wi and deadline
20: end if
21: for all τi ∈ Γ do
22: if q < li then � Check if q is a valid index
23: πq

i ← prio
24: prio← prio− 1
25: end if
26: end for
27: end for
28: end if

deadline misses of periodic tasks.

Lemma 1. The job-class-level fixed-priority scheduling sub-
sumes the task-level fixed-priority scheduling.

Proof: If we assign the same priority to all jobs of τi
(e.g., ∀q : 0 < q ≤ Ki − mi, π

q
i = π0

i), the job-class-level

scheduling can yield the same task schedule as the task-level

fixed-priority scheduling.

Lemma 2. The task model of the job-class-level fixed-priority
scheduling subsumes that of the CFP scheduling [26].

Proof: The task model of the CFP scheduling uses a

single parameter m′ for each task, which means at most

m′ consecutive deadline misses are allowed for that task.

If the (m,K) constraint of a task under the job-class-level

scheduling is set to (m′,m′ + 1), it represents the maximum

of m′ deadline misses permitted in any m′ + 1 consecutive

periods, which captures the case for m′ consecutive deadline

misses. Therefore, the job-class-level scheduling can represent

any constraint imposed by the CFP scheduling model.

B. Priority assignment to job-classes

Priority assignment can affect the overall performance of the

job-class-level scheduler. An optimal priority assignment can

be found by a brute-force method, but due to its extremely

high computational complexity, it is not practically usable.

Therefore, we propose a heuristic priority assignment scheme

given in Alg. 1.

The proposed algorithm is an extension of the deadline-

monotonic (DM) priority assignment policy [3]. The algorithm

first checks the schedulability of a given taskset Γ under the

task-level DM assignment (line 7), which can be done by the

conventional iterative response-time test [22]. If the taskset is

schedulable by DM, the algorithm simply follows the task-

level DM assignment. Hence, a task with a shorter deadline is

assigned a higher priority and all job-classes of each task gets

the same priority (lines 8-14). If the taskset is not schedulable

by DM, the algorithm assigns priorities to individual job

classes. Basically, it has two-level iterations. The outer loop

(line 17) iterates over job-class indices from 0 to L, where

L is the maximum number of job-classes for each task. The

inner loop (line 21) iterates over all tasks in ascending order

of deadlines when q = 0 (sorted in line 2) and in ascending

order of miss thresholds (wi) with deadlines for tie-breaking

when q > 0 (line 19). Hence, the job-class priorities assigned

by the algorithm have the following properties: if Di < Dj ,

π0
i > π0

j , and if wi < wj , πq
i > πq

j for q > 0.

Lemma 3. The proposed job-class-level priority assignment
algorithm subsumes the task-level DM priority assignment.

Proof: Obvious as shown by lines 8-14 of Alg. 1.

C. Example of job-class-level scheduling

Recall the example taskset of Fig. 1 which is unschedulable

by any task-level fixed-priority scheduling, as discussed in

Section I. Table I gives the detailed parameters of this taskset.

However, the proposed job-class-level scheduling and priority

assignment schemes satisfy the weakly-hard constraints of this

taskset. Fig. 3 illustrates the execution timeline of the taskset

under our scheduler, and Fig. 4 depicts the priority changes of

the two tasks of this taskset. As can be seen, each task uses

the priority levels of its all job-classes and the relative priority

ordering of the tasks changes over time.

V. SCHEDULABILITY ANALYSIS

This section presents the schedulability analysis of tasks

with weakly-hard constraints under job-class-level scheduling.

Our analysis consists of two parts: analyzing the response time

of a job with each job-class, and finding job-class patterns that

245

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 12,2020 at 17:47:16 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Task set

Specifications

Task 1 τ1 : (C1 = 6, T1 = 11,m1 = 2,K1 = 4)

Task 2 τ2 : (C2 = 4, T2 = 7,m2 = 4,K2 = 7)

Priority

Task 1 π01 = 6, π11 = 4, π21 = 2

Task 2 π02 = 7, π12 = 5, π22 = 3, π32 = 1

0 20 40 60 80 100 120 140 160 180 200
Time[sec]

0

2

4

6

8

10

Pr
io

ri
ty

Task 1
Task 2

Fig. 4: Priority changes under job-class-level scheduling

can possibly happen at runtime. We will describe each part and

explain how the schedulability test is done.

A. Minimum job-class inter-arrival time

In order to analyze the worst-case response time (WCRT)

of a job with a specific job-class, we need to upper bound the

maximum interference imposed by the jobs of other tasks with

higher-priority job-classes. Such interference can be captured

by finding the minimum arrival time between any two jobs

of the same job-class. Hence, we begin with analyzing this

interval and call it the minimum job-class inter-arrival time.

We first analyze the minimum inter-arrival time of a job-

class Jq
i whose index q is the highest index of a task τi, i.e.,

q = Ki −mi.

Lemma 4. The minimum inter-arrival time of a job-class Jq
i

where q = Ki −mi is given by:

η(Jq
i) = 1 · Ti

Proof: If the WCRT of Jq
i is less than or equal to its

relative deadline Di, the job-class index of the next released

job is always q + 1. However, since q is the highest index of

τi, the next released job maintains the current index even if

the job meets its deadline. Thus, the minimum time for τi to

regain JKi−mi
i is 1 ·Ti. If the WCRT of Jq

i is greater than Di,

the job may or may not meet the deadline when it is scheduled

at runtime. If the job meets the deadline, the minimum time

to regain JKi−mi
i is the same as the case when the WCRT

≤ Di. If the job misses the deadline, the next job may get

J0
i , which causes longer time to regain Jq

i . Therefore, in the

worst case, η(Jq
i) is 1 · Ti.

Lemma 5. The minimum inter-arrival time of Jq
i where q <

Ki−mi and the WCRT of Jq
i is greater than Di is given by:

η(Jq
i) =

{
(q + 1) · Ti , if wi = 1

1 · Ti , if wi > 1

Proof: The proof is done by contradiction. Assume that

when wi = 1, the minimum inter-arrival time of Jq
i is less

Ji
1Ji

1 Ji
0 Ji

0 Ji
0Ji

1 Ji
1Ji

1 Ji
0Ji

1

J

Ji
2Ji

2 Ji
0 Ji

2 Ji
0Ji

2 Ji
1Ji

0 Ji
1Ji

1

J

Deadline met Deadline missed

Ji
0Ji

0 Ji
0 Ji

0 Ji
0Ji

0 Ji
0Ji

0 Ji
0Ji

0

J

(a) WCRT > Di and wi = 1

Ji1Ji1 Ji1 Ji1 Ji1Ji1 Ji0Ji1 Ji0Ji0
J

Ji2Ji2 Ji2 Ji0 Ji2Ji2 Ji0Ji1 Ji2Ji2
J

(b) WCRT > Di and wi > 1

Ji
0Ji

0
Ji

1 Ji
1 Ji

1Ji
0 Ji

0Ji
0 Ji

1Ji
0

J

Ji
0 Ji

1 Ji
0 Ji

1Ji
0 Ji

1Ji
1 Ji

1Ji
1

J

J
Ji,1

1 Ji,2
2 Ji,4

1 Ji,8
2Ji,7

1 Ji,9
0Ji,5

2 Ji,6
0Ji,3

0

J
Ji,1

2 Ji,2
3 Ji,4

1 Ji,8
1Ji,7

3 Ji,9
2Ji,5

2 Ji,6
3Ji,3

31

Ji
1

Ji
2

(c) WCRT ≤ Di

Fig. 5: The minimum time interval between any two jobs of

the same job-class

than (q + 1) · Ti. Since the WCRT of Jq
i is greater than Di,

the job-class index q′ of the next released job can be either 0
or q+1 at runtime. If q′ = 0, by Def. 3, at least q subsequent

jobs should meet their deadlines in order to get the job-class

index of q again, giving (q+1)·Ti as the minimum inter-arrival

time. If q′ = q + 1, it requires at least q + 1 subsequent jobs

(1 miss and q meets) to regain the job-class index q, resulting

in (q + 2) · Ti. These contradict the assumption. Hence, the

inter-arrival time of Jq
i is greater than or equal to (q+ 1) · Ti

when wi = 1. When wi > 1, jobs can continue to have Jq
i as

long as wi permits, and thus the minimum inter-arrival time

of Jq
i is 1 · Ti. The examples of these two cases, wi = 1 and

wi > 1, are illustrated in Fig. 5a and 5b, respectively.

Lemma 6. The minimum inter-arrival time of Jq
i where q <

Ki −mi and the WCRT of Jq
i is less than or equal to Di is:

η(Jq
i) =

{
(wi + 1) · Ti , if q = 0

(q + 2) · Ti , if q > 0

Proof: If q = 0, the proof is done by contradiction.

Assume that the minimum inter-arrival time of Jq=0
i is less

than (wi +1) ·Ti. Since the job-class index q′ of the next job

is always q + 1 = 1 by Def. 3 (∵ WCRT of Jq
i ≤ Di), the

inter-arrival time of J0
i is at least 2 · Ti. This contradicts the

assumption because wi ≥ 1 by Def. 6. Therefore, the inter-

arrival time of Jq=0
i is greater than or equal to (wi + 1) · Ti.

If q > 0, the minimum time for τi to get a job-class J0
i is

246

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 12,2020 at 17:47:16 UTC from IEEE Xplore. Restrictions apply.

2 · Ti because the next job Ji,k+1 always gets the job-class

index of q+1 by Def. 3 and only the second next job Ji,k+2

may be able to get the index 0. Then, at least q ·Ti is required

for τi to get the job-class index q. Therefore, the minimum

inter-arrival time of Jq
i for q > 0 is (q+2) ·Ti. Fig. 5c shows

the examples for both cases.

B. Worst-case response time of job-classes

In order to capture the worst-case temporal interference

from other tasks, we exploit the notion of the minimum job-

class inter-arrival time given by Lemmas 4, 5 and 6.

Lemma 7. The worst-case temporal interference imposed on
a job-class Jq

i by the higher-priority jobs of another task
τk during an arbitrary time window t, which starts with the
release of Jq

i , is upper-bounded by:

W q
i (t, τk) =⎧⎪⎨

⎪⎩
0 , if �p : πq

i < πp
k

min
(∑
∀p:πq

i <πp
k

⌈
t+ Jk

η(Jp
k)

⌉
· Ck,

⌈
t+ Jk

Tk

⌉
· Ck

)
, o.w.

(1)

where Jk is a release jitter of τk.

Proof: If τk does not have any job-class with a priority

level higher πq
i , it obviously will not cause any interference

to Jq
i . This is captured by the first condition of Eq. (1).

Otherwise, Eq. (1) computes the interference from the higher-

priority jobs of τk by extending the conventional iterative

response time test [21]. Instead of using a task-level period

(Tk) in the ceiling function, we use the minimum inter-arrival

time of any two jobs of a job-class (η(Jp
k)) because a job

with the priority of Jp
k cannot repeat more often than 1/η(Jp

k).
With a jitter, interference from a high-priority job is increased

because a job can be released earlier by the amount of a jitter

[9]. This is exactly captured by the first part of the min term.

The amount of interference from τk can be also bounded

by using its period Tk, which is the same as the task-level

analysis [21]. Hence, W q
i can be safely upper-bounded by the

minimum of these two approaches.

Theorem 1. The worst-case response time of Jq
i , denoted by

Rn
i , is bounded by the following recurrence:

Rq,n+1
i ← Ci +

∑
τk∈Γ−τi

W q
i (R

q,n
i , τk) (2)

where Γ is the entire taskset. The recurrence starts with Rq,0
i =

Ci and terminates when Rq,n
i +Ji > Di or Rq,n+1

i = Rq,n
i .

Proof: Obvious from Lemma 7.

Lemma 8. The job-class-level response time test for weakly-
hard tasks given in Eq. (2) is a generalization of the task-level
iterative response time test for hard real-time tasks [21].

Proof: Any hard real-time task τk has only one job-

class (J0
k). Thus, the minimum inter-arrival of this job-class

is η(Jp
k) = Tk and there is only priority level for τk.

Algorithm 2 WCRT for all job-classes of a taskset Γ

Input: Γ: Taskset
1: procedure WCRT(Γ)
2: �← all job-classes of a taskset Γ
3: � πq

i is a priority of a job-class index q of task τi
4: for all job-classes ∈ � in descending order of priority do
5: i← a task index of a job-class in �
6: q ← a job-class index of a task τi
7: Rq

i ← Ci

8: while Rq,n+1
i > Rq,n

i do
9: W q

i ← 0
10: for k = 1 to N do � Check all tasks.
11: v ← 0
12: if k �= i then
13: for p = 0 to Kk −mk do
14: if πp

k > πq
i then

15: if WCRT of Jp
k ≤ Dk then

16: if p == 0 then
17: η(Jp

k)← (wk + 1) · Tk

18: else if q > 0 then
19: η(Jp

k)← (p+ 2) · Tk

20: end if
21: else
22: if wk == 1 then
23: η(Jp

k)← (p+ 1) · Tk

24: else if wk > 1 then
25: η(Jp

k)← 1 · Tk

26: end if
27: end if
28: if p == Kk −mk then
29: η(Jp

k)← 1 · Tk

30: end if
31: v ← v +

⌈
R

q,n
i +Jk

η(J
p
k
)

⌉
× Ck

32: end if
33: end for
34: end if
35: W q

i ←W q
i +min

(
v,
⌈

R
q,n
i +Jk

Tk

⌉
× Ck

)

36: end for
37: Rq,n+1

i ← Ci +W q
i

38: n← n+ 1
39: end while
40: WCRT of Jq

i ← Rq,n+1
i + Ji

41: end for
42: WCRT of all job-classes in �
43: end procedure

Then, the first part of the min term of Eq. (1) is reduced to

�(t+ Jk)/(Tk)� ×Ck, which is the same as the second part,

and expanding Eq. (2) with this reduced W q
i gives the same

analysis as the conventional response time test.

Based on Eqs. (1) and (2), one can compute the WCRT

of the job-classes of all tasks, in descending order of job-

class priority. This is because the analysis needs the WCRT

of higher-priority job-classes to get their inter-arrival time. The

detailed procedure for doing this can be found in Algorithm 2.

All job-classes are sorted in descending order of their priorities

in line 4 so that the η(Jp
k) of any higher-priority job-classes

can be considered by the WCRT calculation done in the inner

while loop (from lines 8 to 39). The worst-case interference

W q
i is found by Lemma 7 in line 35 and the WCRT of a

job-class Jq
i is computed by Theorem 1 in line 40.

247

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 12,2020 at 17:47:16 UTC from IEEE Xplore. Restrictions apply.

C. Schedulability test for tasks with weakly-hard constraints

After checking the WCRT of all job-classes, now we can

test the schedulability of individual tasks w.r.t. weakly-hard

constraints. Note that if a task τi has no job-class Jq
i with

Rq
i ≤ Di, the task cannot be said schedulable in our job-

class-level analysis framework.

Lemma 9 (Prerequisite for our schedulability analysis). For a
task τi to be schedulable by our job-class-level schedulability
analysis, the WCRT of the lowest-indexed job-class (J0

i)
should be less than or equal to its deadline Di.

Proof: Suppose that the WCRT of the lowest-indexed job-

class J0
i is greater than its deadline. Then the WCRT of other

job-classes (e.g., J1
i and J2

i) of τi is always greater than the

deadline because J0
i has the highest priority in τi. Thus, τi

cannot be guaranteed to be schedulable by our analysis.

If a task does not satisfy the above prerequisite, it is

immediately considered unschedulable by our analysis. If it

satisfies, we next check the m/K ratio of the task, which

greatly reduces the time complexity of schedulability analysis.

Lemma 10. A task τi is always schedulable if the ratio of
mi/Ki is greater than or equal to 0.5 and it satisfies the
prerequisite given by Lemma 9.

Proof: Recall the definition of a miss threshold wi. If

τi misses wi deadlines consecutively, the next job of τi is

assigned the lowest-index job-class J0
i whose WCRT is ≤ Di

(guaranteed by the prerequisite). This means that, even if τi’s
all other job-classes have WCRT > Di, τi can have at least

1 deadline met every wi + 1 periods. Based on this property,

the proof can be done in two steps as follows.

Step 1. We prove that there are one or more occurrences of

the wi+1 periods within the Ki window, by showing ∃α ∈ Z
that satisfies the following equation:

(wi + 1) · α ≤ Ki (3)

By Def. 6, wi+1 can be substituted by
⌊

Ki

Ki−mi

⌋
as mi/Ki ≥

0.5. With mi ≤ Ki− 1, the upper bound of the left-hand side

is �Ki� · α. The inequality �Ki� · α ≤ Ki is always true for

α, and thus it is proved.

Step 2. The inequality (wi + 1) · α ≤ Ki means that there

are at least α deadlines met in the Ki window. Hence, if we

prove that α is greater than or eqaul to Ki − mi in the Ki

window, the task is always schedulable as long as the condition

of Lemma 9 is satisfied. Hence, we prove:

1

wi + 1
≥ Ki −mi

Ki
(4)

Since wi =
⌊

Ki

Ki−mi

⌋
−1 for mi/Ki ≥ 0.5 by Def. 6, Eq. (4)

is rewritten as follows:
1⌊
Ki

Ki−mi

⌋ ≥ Ki −mi

Ki
(5)

⇒
⌊

Ki

Ki −mi

⌋
≤ Ki

Ki −mi

This inequality is always true as mi ≤ Ki − 1, and thus

completes the proof.

When the ratio of mi/Ki is less than 0.5, we check

all possible μ-patterns that can happen at runtime. Thus, a

reachability tree to be introduced next assumes that the ratio

of mi/Ki < 0.5, which also means wi = 1. Moreover, since

a single consecutive missed job is allowed, we find the exact

upper-bound of the complexity of each tree, which is detailed

in Section V-E

D. Reachability trees

A reachability tree consists of a node, which indicates a

job-class, and a branch, which represents deadline missed or

met of the node, as depicted in Fig. 6. Two types of nodes

exist based on the WCRT. If the WCRT ≤ Di, the node has a

single meet branch, e.g., nodes 1 and 4 in Fig. 6. Otherwise, a

node has two branches (miss and meet), e.g., nodes 2, 3, and

5. Thus, the proposed tree model is generated by the following

two Lemmas.

Ancestors (depth 1)

Children (depth k)

Branch
(meet)

WCRT : node 1, 4
WCRT : node 2, 3, 5

3 4 5

1 2

6 7 98 0

J

J J

J

Branch
(miss)

1 Node

Root side

Leaf side

Fig. 6: A reachability tree model

Lemma 11. If a node is from its parent’s miss branch, the
node always generates a single meet branch.

Proof: Since a miss threshold wi = 1, the node from a

miss branch always belongs to the lowest-indexed job-class

J0
i . By Lemma 9, the WCRT of the node is less than the

deadline. Thus, it only generates a meet branch.

Lemma 12. If a node is from its parent’s meet branch, this
node generates two sub-branches, miss and meet, in the worst
case.

Proof: When a node is generated by a meet branch,

two cases exist based on the WCRT of its parent node: its

parent’s WCRT ≤ Di and WCRT > Di. In the former case,

the node may generate one or two sub-branches based on its

own WCRT, as depicted node 3 in Fig. 6. The node always

generates two sub-branches when its parent’s WCRT > Di

because the WCRT of its parent node, which has a higher

priority, is greater than the deadline (e.g., node 5 in Fig. 6).

Note that the number of reachability trees of a task is equal

to the number of job-classes of the task. This is because wi =
1 and there are no other cases that a task can take as initial

conditions. Each tree has the following properties.

1) There exist Ki−mi +1 trees for a task and the root node

of each tree represents a different job-classes of the task.

248

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 12,2020 at 17:47:16 UTC from IEEE Xplore. Restrictions apply.

2) Each tree has Ki depth in order to check the satisfiability

of the (mi,Ki) constraint of a task τi.
3) Each node has a μ-pattern, which indicates a series of

deadline met or missed jobs from the root to its parent node.

4) The leaf nodes have C-patterns that represent the indices

of job-classes for the Ki execution window of a task.

Hence, the proposed reachability tree model of a task gen-

erates all possible job-class patterns that happens at runtime,

as shown by the following lemma.

Lemma 13. The reachability trees of a task τi represent all
possible job-class patterns that the task can experience at its
runtime for any execution window of Ki jobs.

Proof: By the property 1) of the reachability tree, the

trees cover all the starting job-classes that the task has. Each

node creates all possible cases, i.e., deadline met and missed

jobs, by Lemmas 11 and 12. Besides, since individual trees

have Ki-depth as stated in property 2), our reachability trees

represent all possible job-class patterns for Ki job executions.

Root J0,0
: 0

J1,0

J0,1

J1,1 J0,1

J2,0

J2,0Miss Meet

: 010

: 01

0

: 0101

: 011

: 0110 : 0111

Depth

0 : miss
1 : meet

−patterns : 0101 0120 0122

−patterns

Legend

−patterns

Jq, m

m : number of misses
q : index of a job-class

Fig. 7: Examples of a reachability tree

Fig. 7 illustrates an example of a reachability tree from a

taskset in Table I. In Fig. 3, we observe that the indices of

the first four jobs of Task 1 are J0
1,1, J1

1,2, J2
1,3, and J0

1,4

respectively, which is depicted as a C-pattern 0120 in Fig. 7.

Theorem 2. Schedulability. A task is guaranteed to be schedu-
lable if the μ-patterns at all leaf nodes in its reachability trees
satisfy the weakly-hard constraint.

Proof: The proof can be done by contradiction. Suppose

that all μ-patterns of a task satisfy the constraints, but the

task is unschedulable. Since the reachability trees of a task

represent all possible job-class patterns by Lemma 13, this

means that there exist other job-class patterns that make the

task unschedulable. This, however, contradicts the Lemma 13,

thus completing the proof.

E. Complexity of a reachability tree

The proposed reachability tree model has a bounded com-

putational complexity and is faster than other weakly-hard

schedulability methods, which will be shown in the evaluation

section. Moreover, as can be seen in Figs. 6 and 7, the number

of nodes from the root to leaf nodes forms the Fibonacci

sequence.

Theorem 3. In a reachability tree, the upper-bound on the
number of nodes follows the Fibonacci sequence, which starts
from the root to the leaf node.

Proof: By Lemmas 11 and 12, a node in a reachabiity

tree can generate only the patterns illustrated in Fig. 6. By

these patterns, the number of nodes at depth i of a tree is

the sum of the number of its parents and grandparents. Thus,

the number of nodes at depth i is bounded as the Fibonacci

sequence, and given as fi+2 = fi+1 + fi.
Moreover, for a task, the total complexity of reachabiity

trees can be bounded as follows.

Theorem 4. The complexity of computing all the reachability
trees of a task τi, Oi, is upper-bounded by

Oi ≤ (Ki −mi + 1)× ρKi+1 − (1− ρ)Ki+1

√
5

(6)

where ρ = 1+
√
5

2 , which is the golden ratio, and Ki−mi +1
is the number job-classes.

Proof: By Theorem 3, each reachability tree follows

the Fibonacci sequence, where the total number of nodes is

bounded by
ρKi+1−(1−ρ)Ki+1

√
5

, as already proved in [40]. Since

one reachability tree is created for one distinct job-class, there

are at most Ki−mi +1 trees for τi, and thus Eq. 6 holds.

VI. EVALUATION

We first check the runtime overhead of the proposed job-

class-level scheduler by using a prototype implementation in

the Linux kernel. We then perform schedulability experiments

to compare it with other existing approaches and to explore

its performance characteristics in various scenarios.

A. Implementation cost

We have implemented the proposed scheduler in the Linux

kernel v4.9.80 running on a Raspberry Pi 3 equipped with

a quad-core ARM Cortex-A53 processor. Since our work

focuses on uniprocessor scheduling, the implemented sched-

uler operates on a per-core basis with no task migration.

The implementation largely consists of two parts: updating

task priority and handling deadline-missed jobs. To update

task priority, the scheduler first keeps track of individual job

executions and updates the μ-pattern. It then determines the

job-class index of a newly released job based on the μ-pattern,

and finally sets the task’s priority according this job-class.

If a job misses the deadline, the scheduler drops this job

immediately by stopping its execution, in accordance to our

system mode, and rolls the task’s state back to the previous

clean state. Such a rollback is required for the correct operation

of the next job as the previous job might have been dropped

before releasing a lock or finishing memory writes.

In our implementation, we used a user-level checkpointing

technique for the task rollback mechanism. This technique

performs the following three steps: 1) creating a checkpoint

of a task, 2) notifying a deadline miss from the kernel to

the user space, and 3) recovering from the checkpoint. For

step 1, a task calls sigsetjmp to store its status at the

249

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 12,2020 at 17:47:16 UTC from IEEE Xplore. Restrictions apply.

beginning of each job execution. For step 2, the kernel sends

a signal to the task when its deadline is missed and the task

implements the corresponding signal handler. For step 3, the

task’s signal handler calls siglongjmp to restore the status.

If the task has other resources to be restored, such as lock

releases, relevant code can be added to the signal handler

before calling siglongjmp.

Overhead measurement. We measured the runtime overhead

of our scheduler implementation. To minimize measurement

errors, dynamic frequency scaling was disabled and the pro-

cessor was configured to use its maximum clock frequency,

1.2 GHz. The overhead was measured by running a taskset

consisting of five tasks with periods of 20 ms to 40 ms, and

a total of 118,569 jobs were generated during 10 minutes of

running time.

TABLE II: Runtime overhead [μs]

Type Mean Max Min 99%th

Updating μ-pattern 0.3002 1.1460 0.1040 0.6250

Updating job-class index 1.5035 11.8750 0.5210 2.5000

Changing task priority 4.7633 28.9580 3.0210 11.3020

Rollback
Checkpointing 1.9413 9.3230 1.2500 3.2290

Recovery 6.1257 24.8430 0.4680 8.3146

Table II reports the measurement results. In the rollback

mechanism, checkpointing is the time to execute sigsetjmp
and recovery is the time from the kernel sending a signal

to the completion of the user-level signal handler. Changing

priority and recovery are the two most costly operations.

The sum of all entries in each column indicates the total

amount of overhead imposed on each job invocation. Since

the maximum total overhead per job is observed to be much

less than 100 μs, we conclude that the runtime overhead of

our scheduler is acceptably small on commodity embedded

platforms like Raspberry Pi.

B. Schedulability experiments

This subsection is organized in two parts. The first part

presents a comparative evaluation with the two other weakly-

hard scheduling schemes [25, 38], and the second part exam-

ines the detailed behavior of our job-class-level scheduler. All

experiments are conducted on a machine equipped with an

Intel Core-i7 2.3 GHz processor and 8GB of memory.

Taskset generation. We use 1,000 randomly-generated

weakly-hard tasksets for each experimental setting, e.g., each

point on the x-axis of figures. For each taskset, task utilization

is obtained by the UUniFast algorithm [7]. Task period is

chosen randomly in [10, 1000] ms. Task deadline is set equal

to the period, i.e., Ti = Di. Unless otherwise mentioned,

release jitter is set to 0. Motivated by a recent study [42]

that empirically discovered reasonable weakly-hard constraints

from a practical application, the K value is selected from the

set of {5, 10, 15}.
Comparison of schedulability tests. We compare our work

with the two other existing approaches. The first one is

the offset-free weakly-hard schedulability analysis for fixed-

priority scheduling [38]. Although it uses a different method

from ours to handle deadline-missed jobs, i.e., jobs continue to

execute even after the deadline, we chose this work because it

is the latest study on weakly-hard scheduling. The second one

is the Red-Task-Only version of the skip-over algorithm [25],

and it was chosen as it drops deadline-missed jobs, same as our

work. In summary, the following three methods are compared:

• JCLS: the proposed Job-Class-Level Scheduler with reach-

ability tree analysis (our work)

• WSA: the Weakly-hard Schedulability Analysis for offset-

free periodic tasks [38]

• RTO-RM: the Red-Task-Only approach for periodic tasks

with RM priority assignment [25]

We used the source code of WSA provided in [37] by the

authors of [38] and our own implementation of RTO-RM. For

our experimental conditions to be consistent with [38], all tasks

in the same taskset are set to use a common (m,K) constraint.

This is because the currently available WSA source code does

not support testing a taskset with various (mi,Ki) constraints,

but we will examine such cases for JCLS in the later part of

this subsection. The weakly-hard constraint K for each taskset

is set to 10 and m is chosen randomly in the range of [1, 9].
Following these rules, we generated 1,000 tasksets with 20

tasks each at each level of the total maximum utilization UM .

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
UM

0

0.2

0.4

0.6

0.8

1

Sc
he

du
la

bi
lit

y
ra

tio Um

JCLS
WSA
RTO-RM(Skip-over)
RM

Fig. 8: Schedulability under JCLS, WSA, and RTO-RM

Fig. 8 shows the ratio of weakly-hard schedulable tasksets

under the three approaches. The schedulability results under

hard RM scheduling is also shown for comparison purpose.

At UM = 0.95, JCLS schedules 56% of tasksets while

WSA and RTO-RM schedule only 26% and 16% of tasksets,

respectively. WSA and RTO-RM do not dominate each other.

When UM < 1, WSA outperforms RTO-RM, but when

UM ≥ 1, WSA cannot find any schedulable taskset while

RTO-RM still schedules some tasksets. JCLS shows much

higher schedulability ratios than WSA and RTO-RM, e.g.,

even at UM = 1.8, JCLS schedules 11% of tasksets. This

result demonstrates that our JCLS scheduler utilizes the CPU

resource more efficiently than the other two prior approaches

and the benefit is significant especially when the system is

overloaded.

Comparison of analysis running time. In this experiment,

we evaluate the analysis running time of JCLS and WSA,

which is the time to determine the schedulability of a given

taskset. It is obviously affected by the number of tasks in the

taskset. We thus consider three cases, where the number of

250

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 12,2020 at 17:47:16 UTC from IEEE Xplore. Restrictions apply.

tasks per taskset is 10, 30, and 50, respectively, and generate

1,000 tasksets for each case. The weakly-hard constraint K
is set to 10 and m is randomly selected from [1, 9]. The

analysis running time of JCLS is measured on Raspberry Pi

3 running at 1.2 GHz. On the other hand, WSA is measured

on an Intel Core-i7 system running at 2.3 GHz because the

CPLEX Optimizer required by the WSA program could not

be installed on Raspberry Pi.

TABLE III: Analysis running time of JCLS and WSA [sec]

Number of tasks Approach Mean Max

10
JCLS 0.0010 0.0046

WSA 0.2739 114.2892

30
JCLS 0.0112 0.0432

WSA 25.7284 1800.5996

50
JCLS 0.0331 0.1463

WSA 78.5982 3002.5189

Table III shows the mean and maximum running time of

JCLS and WSA. Although JCLS is measured on a much

resource-constrained platform, its analysis time is significantly

shorter than that of WSA. We observed that the analysis time

of JCLS becomes even shorter when it runs on the same

x86 platform. Therefore, we conclude that our schedulability

analysis using reachability trees is much faster than WSA and

is applicable to runtime admission control.

Various (mi,Ki) constraints. We now use various (mi,Ki)
constraints for tasks in each taskset. Since the WSA implemen-

tation does not support this, we will limit our focus to JCLS.

We first evaluate the impact of the Ki parameter on weakly-

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
UM

0

0.2

0.4

0.6

0.8

1

Sc
he

du
la

bi
lit

y
ra

tio

(m=[0.5*K , K-1], K=5)
(m=[0.5*K , K-1], K=10)
(m=[0.5*K , K-1], K=15)
RM

Fig. 9: Schedulability results with different Ki values

hard schedulability in Fig. 9. Three different Ki values are

considered under JCLS: 5, 10, and 15. The range of mi used

is [�0.5×Ki�,Ki−1], and each task’s mi is randomly chosen

in this range. Hence, the average ratio of mi/Ki is similar in

all the three Ki cases. Each generated taskset has 20 tasks.

As can be seen in the figure, the ratio of schedulable tasksets

slightly increases with Ki under JCLS. This is due to that

a larger Ki can give more chances for tasks to satisfy their

weakly-hard constraints.

We then investigate in Fig. 10 the impact of the mi/Ki

ratio under JCLS, by using different ranges of mi for a fixed

Ki value. The schedulability of JCLS decreases as mi/Ki

reduces. Specifically, we observe that the schedulability of

JCLS drops drastically when the mi/Ki ratio is less than 0.5.

This is because if tasks with small mi have short periods, the

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
UM

0

0.2

0.4

0.6

0.8

1

Sc
he

du
la

bi
lit

y
ra

tio (m=[0.7*K , K-1], K=10)
(m=[0.6*K , K-1], K=10)
(m=[0.5*K , K-1], K=10)
(m=[0.4*K , K-1], K=10)
(m=[0.3*K , K-1], K=10)
RM

Fig. 10: Schedulability results with different mi/Ki ratios

use of (mi,Ki) does not help much in reducing interference

to other tasks with larger mj , compared to hard real-time RM.

Furthermore, the higher number of tasks with small mi in a

taskset, the lower the schedulability ratio is. We’ll discuss this

trend in detail with the following experiments.

10 20 30 40 50 60 70 80 90
Percentage of heavy tasks

0

0.2

0.4

0.6

0.8

1

Sc
he

du
la

bi
lit

y
ra

tio JCLS
RM

(a) mi/Ki < 0.5 for heavy tasks

10 20 30 40 50 60 70 80 90
Percentage of heavy tasks

0

0.2

0.4

0.6

0.8

1

Sc
he

du
la

bi
lit

y
ra

tio JCLS
RM

(b) mi/Ki < 0.5 for light tasks

Fig. 11: Schedulability results with bimodal tasksets

Bimodal tasksets with mi/Ki < 0.5 tasks. In order to better

understand the schedulability characteristics of JCLS for tasks

with mi/Ki < 0.5, we use bimodal tasksets consisting of

light and heavy tasks. The utilization ranges for light and

heavy tasks are [0.01, 0.15] and [0.2, 0.4], respectively. Either

heavy tasks or light tasks are assigned mi/Ki < 0.5 and the

other mi/Ki ≥ 0.5 depending on experimental settings. For

each taskset generation, light and heavy tasks are generated

according to their given percentages until the taskset’s total

maximum utilization exceeds the target UM , and then the

last task’s utilization is reduced to meet UM . The (mi,Ki)
constraints are set to (4, 10) for the mi/Ki < 0.5 case and

(9, 10) for the other case. The target maximum total utilization

UM is set to 0.9. Fig. 11 shows the results of JCLS and

RM schedulability with bimodal tasksets as the percentage of

heavy tasks increases. As expected, we can observe that the

difference between JCLS and RM reduces as the percentage

of tasks with mi/Ki < 0.5 increases, but in both heavy- and

light-task cases, JCLS yields better results than RM.

Varying mi for a fixed (mi,Ki) constraint. We also conduct

experiments with bimodal tasksets by varying the mi param-

eter for a fixed (mi,Ki) constraint. Fig. 12 shows the results

251

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 12,2020 at 17:47:16 UTC from IEEE Xplore. Restrictions apply.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
UM

0

0.2

0.4

0.6

0.8

1

Sc
he

du
la

bi
lit

y
ra

tio m=8,K=10
m=6,K=10
m=4,K=10
m=2,K=10
RM

(a) Results as UM increases

0 1 2 3 4 5 6 7 8 9
m

0

0.2

0.4

0.6

0.8

1

Sc
he

du
la

bi
lit

y
ra

tio

UM = 0.85

UM = 0.95

UM = 1.05

UM = 1.25

UM = 1.45

(b) Results as m increases

Fig. 12: Schedulability results with different mi values

of this experiment. The percentages of light tasks and heavy

tasks are 80% and 20%, respectively, and the mi parameter

of heavy tasks is varied as shown in the legend of Fig. 12a

and on the x-axis of Fig. 12b. Other task parameters remain

the same as before. Similar to the trends observed in previous

experiments, the schedulability decreases as mi gets smaller.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
UM

0

0.2

0.4

0.6

0.8

1

Sc
he

du
la

bi
lit

y
ra

tio JCLS(No jitter)
JCLS(Jitter:0.01*T

i
)

JCLS(Jitter:0.05*T
i
)

Fig. 13: Schedulability results with release jitters

Release jitters. One of the advantages of the proposed analysis

is that it can analyze tasks with non-zero release jitters. In

this experiment, we check the schedulability characteristics of

JCLS in the presence of jitters that are proportional to the

period of each task, e.g., 1% and 5% of Ti. Tasksets are

generated in the same way as in Fig. 9. As can be seen in

Fig. 13, schedulability decreases slightly as the amount of

jitter increases but there is no drastic reduction. This result

demonstrates that our approach can be applied to realistic

applications where release jitters exist.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
UM

0

0.5

1

Sc
he

du
la

bi
lit

y
ra

tio m=4, K=5
m=9, K=10
m=14, K=15
RM

Fig. 14: Schedulability results for consecutive deadline misses

Consecutive deadline misses. As discussed in Section IV, our

work can safely bound the number of consecutively missed

deadlines, mi, by modeling Ki = mi + 1 in the (mi,Ki)
form. Tasksets are generated in the same way as in Fig. 9,

except for the (mi,Ki) parameters. Fig. 14 shows that the

schedulability of tasksets slightly increases with a larger Ki

value. This trend is similar to that in Fig. 9, but one difference

here is that the ratio of mi/Ki reduces as Ki increase, which

helps improve schedulability.

VII. CONCLUSION

In this work, we propose a job-class-level fixed-priority

scheduling and a schedulability analysis framework for

weakly-hard systems. Our scheduler employs a meet-oriented

classification of jobs of tasks and can support the scheduling

of periodic and sporadic tasks with arbitrary initial offsets and

release jitters. The schedulability analysis for our proposed

scheduler consists of two steps: analysis of the worst case re-

sponse time for individual job-classes, and finding all possible

scheduling patterns using the reachability trees. Our evaluation

results have demonstrated that the proposed scheduler and its

schedulability analysis outperforms prior work with respect to

the taskset schedulability and the analytical complexity. It has

been also shown that tasksets with the maximum utilization

higher than 1 is schedulable under our scheduler. However, we

assume that the scheduler is aware of deadline misses of jobs

and cancel it immediately when a job missed the deadline.

We will investigate the impact of relaxing these assumptions

under the job-class-level scheduling framework. Also, some

results indicate that our schedulability analysis is pessimistic

when the ratio of mi/Ki is less than 0.5. We leave addressing

this pessimism as part of our future work.

REFERENCES

[1] L. Ahrendts, S. Quinton, and R. Ernst. Exploiting execution dynamics
in timing analysis using job sequences. IEEE Design Test, PP(99):1–1,
2017.

[2] M. Asberg, T. Nolte, and M. Behnam. Resource sharing using the
rollback mechanism in hierarchically scheduled real-time open systems.
In IEEE Real-Time Technology and Applications Symposium (RTAS),
2013.

[3] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings.
Hard real-time scheduling: The deadline-monotonic approach. IFAC
Proceedings Volumes, 24(2):127–132, 1991.

[4] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: a synchronization
protocol for hierarchical resource sharingin real-time open systems.
In ACM International Conference on Embedded Software (EMSOFT),
2007.

[5] G. Bernat, A. Burns, and A. Liamosi. Weakly hard real-time systems.
IEEE transactions on Computers, 50(4):308–321, 2001.

[6] G. Bernat and R. Cayssials. Guaranteed on-line weakly-hard real-time
systems. In IEEE Real-Time Systems Symposium (RTSS), 2001.

[7] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[8] R. Blind and F. Allgöwer. Towards networked control systems with
guaranteed stability: Using weakly hard real-time constraints to model
the loss process. In Decision and Control (CDC), 2015 IEEE 54th
Annual Conference on, pages 7510–7515. IEEE, 2015.

[9] R. J. Bril, J. J. Lukkien, and R. H. Mak. Best-case response times and
jitter analysis of real-time tasks with arbitrary deadlines. In Proceedings
of the 21st International conference on Real-Time Networks and Systems,
pages 193–202. ACM, 2013.

[10] T. Bund and F. Slomka. Controller/platform co-design of networked
control systems based on density functions. In ACM SIGBED Interna-

252

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 12,2020 at 17:47:16 UTC from IEEE Xplore. Restrictions apply.

tional Workshop on Design, Modeling, and Evaluation of Cyber-Physical
Systems, pages 11–14. ACM, 2014.

[11] H. S. Chwa and J. L. Kang G. Shin. Closing the gap between stability
and schedulability: A new task model for cyber-physical systems. In
IEEE Real-Time Technology and Applications Symposium (RTAS), 2018.

[12] G. Frehse, A. Hamann, S. Quinton, and M. Woehrle. Formal analysis
of timing effects on closed-loop properties of control software. In IEEE
Real-Time Systems Symposium (RTSS), 2014.

[13] M. B. Gaid, D. Simon, and O. Sename. A design methodology for
weakly-hard real-time control. IFAC Proceedings Volumes, 41(2):10258
– 10264, 2008. 17th IFAC World Congress.

[14] O. Gettings, S. Quinton, and R. I. Davis. Mixed criticality systems with
weakly-hard constraints. In International Conference on Real Time and
Networks Systems (RTNS), 2015.

[15] J. Goossens. (m, k)-firm constraints and dbp scheduling: impact of the
initial k-sequence and exact schedulability test. In 16th International
Conference on Real-Time and Network Systems (RTNS), 2008.

[16] Z. Guo and S. Baruah. The concurrent consideration of uncertainty
in WCETs and processor speeds in mixed-criticality systems. In
International Conference on Real Time and Networks Systems (RTNS),
pages 247–256. ACM, 2015.

[17] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment
technique for streams with (m, k)-firm deadlines. IEEE Transactions
on Computers, 44(12):1443–1451, 1995.

[18] Z. A. Hammadeh, R. Ernst, S. Quinton, R. Henia, and L. Rioux.
Bounding deadline misses in weakly-hard real-time systems with task
dependencies. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2017.

[19] Z. A. H. Hammadeh, S. Quinton, and R. Ernst. Extending typical
worst-case analysis using response-time dependencies to bound deadline
misses. In ACM International Conference on Embedded Software
(EMSOFT), 2014.

[20] Z. A. H. Hammadeh, S. Quinton, M. Panunzio, R. Henia, L. Rioux, and
R. Ernst. Budgeting Under-Specified Tasks for Weakly-Hard Real-Time
Systems. In Euromicro Conference on Real-Time Systems (ECRTS),
2017.

[21] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal, 29(5):390–395, 1986.

[22] M. Joseph and P. K. Pandya. Finding response times in a real-time
system. Comput. J., 29(5):390–395, 1986.

[23] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. Parallel scheduling
for cyber-physical systems: Analysis and case study on a self-driving
car. In International Conference on Cyber-Physical Systems (ICCPS),
2013.

[24] H. Kopetz. Real-time systems: design principles for distributed embed-
ded applications. Springer Science & Business Media, 2011.

[25] G. Koren and D. Shasha. Skip-over: Algorithms and complexity for
overloaded systems that allow skips. In Real-Time Systems Symposium,
1995. Proceedings., 16th IEEE, pages 110–117. IEEE, 1995.

[26] J. Lee and K. G. Shin. Development and use of a new task model for
cyber-physical systems: A real-time scheduling perspective. Journal of
Systems and Software, 126:45–56, 2017.

[27] J. Li, Y. Song, and F. Simonot-Lion. Providing real-time applications
with graceful degradation of QoS and fault tolerance according to
(m, k)-firm model. IEEE Transactions on Industrial Informatics,
2(2):112–119, 2006.

[28] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM (JACM),
20(1):46–61, 1973.

[29] P. Marti, A. Camacho, M. Velasco, and M. E. M. B. Gaid. Runtime
allocation of optional control jobs to a set of CAN-based networked
control systems. IEEE Transactions on Industrial Informatics, 6(4):503–
520, Nov 2010.

[30] A. K. Mok. Fundamental design problems of distributed systems for
the hard real-time environment. PhD Thesis, Massachusetts Institute of
Technology, 1983.

[31] P. Pazzaglia, L. Pannocchi, A. Biondi, and M. Di Natale. Beyond the
weakly hard model: Measuring the performance cost of deadline misses.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 106.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[32] S. Quinton, T. T. Bone, J. Hennig, M. Neukirchner, M. Negrean, and
R. Ernst. Typical worst case response-time analysis and its use in
automotive network design. In Design Automation Conference (DAC),
2014.

[33] S. Quinton, M. Hanke, and R. Ernst. Formal analysis of sporadic
overload in real-time systems. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2012.

[34] S. Quinton, M. Negrean, and R. Ernst. Formal analysis of sporadic bursts
in real-time systems. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2013.

[35] P. Ramanathan. Overload management in real-time control applications
using (m, k)-firm guarantee. IEEE Transactions on Parallel and
Distributed Systems, 10(6):549–559, Jun 1999.

[36] D. Soudbakhsh, L. T. Phan, A. M. Annaswamy, and O. Sokolsky. Co-
design of arbitrated network control systems with overrun strategies.
IEEE Transactions on Control of Network Systems, 2016.

[37] Y. Sun and M. D. Natale. m-k-wsa. https://github.com/m-k-wsa/, 2017.
[38] Y. Sun and M. D. Natale. Weakly hard schedulability analysis for fixed

priority scheduling of periodic real-time tasks. ACM Transactions on
Embedded Computing Systems (TECS), 16(5s):171, 2017.

[39] S. Tobuschat, R. Ernst, A. Hamann, and D. Ziegenbein. System-level
timing feasibility test for cyber-physical automotive systems. In IEEE
Symposium on Industrial Embedded Systems (SIES), 2016.

[40] J. Verner E. Hoggatt. Fibonacci and Lucas Numbers. Boston: Houghton
Mifflin Co., 1969.

[41] W. Xu, Z. A. H. Hammadeh, A. Kröller, R. Ernst, and S. Quinton.
Improved deadline miss models for real-time systems using typical
worst-case analysis. In Euromicro Conference on Real-Time Systems
(ECRTS), 2015.

[42] M. Yayla, K.-h. Chen, and J.-j. Chen. Fault Tolerance on Control
Applications : Empirical Investigations of Impacts from Incorrect Cal-
culations. In International Workshop on Emerging Ideas and Trends in
Engineering of Cyber-Physical Systems (EITEC), 2018.

253

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 12,2020 at 17:47:16 UTC from IEEE Xplore. Restrictions apply.

