
PiCAS: New Design of Priority-Driven
Chain-Aware Scheduling for ROS2

Hyunjong Choi, Yecheng Xiang, Hyoseung Kim

RTAS 2021

Robot Operating System (ROS)

2

I. IntroductionI. Introduction

Willow Garage PR2

(original ROS robot)

http://willowgarage.com

< https://metrics.ros.org/index.html;

accessed at April 2021>

Over the decades, it has revealed shortcomings in real-time support

for timing- and safety-critical applications

▪ROS (since 2007)

▪ Popular open-source middleware in academia and industry

▪ Provides software tools, robot systems, and best-practices

Why real-time in ROS ?
▪ To develop safety-critical application with ROS

▪ Autonomous driving software (e.g., autoware.ai)

3

< Autoware.ai > †

†S. Kato et al. “Autoware on Board: Enabling Autonomous Vehicles with Embedded Systems”, ICCPS, 2018

< Chain in self-driving application >

Timing constraint violations (e.g., end-to-end

latency) can cause catastrophic accidents

I. IntroductionI. Introduction

ROS 2 (since 2017)
▪ Most concepts are inherited from the original ROS design (e.g., pub-sub)

▪ Aims to improve real-time capability, QoS, and security

▪ Supports Data Distribution Service (DDS)

4

I. IntroductionI. Introduction

Ardent Apalone,

released Dec 2017

Eloquent Elusor,

released Nov 2019

< ROS2 architecture >

Suffers from priority inversion

No systematic resource allocation policy

Needs a new RT scheduler for ROS2 !

Too complex and pessimistic to analyze

Contributions

▪We propose a new priority-driven chain-aware scheduler for ROS2

in a multi-core environment (PiCAS)

▪We develop analysis to upper-bound the end-to-end latency of

chains under the proposed PiCAS framework

▪We implement PiCAS in the Eloquent Elusor version of ROS2 on an

embedded platform (NVIDIA Xavier NX)

▪ PiCAS outperforms the default ROS2 scheduler and the latest analysis

work in terms of end-to-end latency

5

II. ROS2 Background & System ModelI. Introduction

ExecutorExecutor

Scheduling-related abstractions in ROS2
▪Callbacks, nodes, and executors

6

II. ROS2 Background & System ModelII. ROS 2 Background & System Model

Callback

Node

Node

Node

Node

Callback

Callback

Callback

Callback

Chain

✓ Timer / regular callbacks

✓ Non-preemptive

✓ 𝜏𝑖 ≔ (𝐶𝑖 , 𝐷𝑖 , 𝑇𝑖 , 𝜋𝑖)

Callback model

✓ 𝒩 =: {𝑛1, … , 𝑛𝑗 , … , 𝑛𝑁}

✓ Not schedulable entities

Node model

✓ ℰ𝑖 =: {𝑒1, , … , 𝑒𝑗 , … , 𝑒𝐸}

✓ Preemptive

✓ Schedule with
SCHED_FIFO

Executor model✓ Γ𝑐 ≔ [𝜏𝑠, 𝜏𝑚1, … , 𝜏𝑒]
✓ 𝜏𝑠 : the start callback of Γ𝑐

✓ 𝜏𝑚∗ : the intermediate

callback of Γ𝑐

✓ 𝜏𝑒 : the end callback of Γ𝑐

Chain model

CPU cores

Challenges (1/2)

7

III. PiCASII. ROS 2 Background & System Model

▪ Challenge I: Fairness-based scheduling within executors

Chain 1

Semantic priority: Chain 1 > Chain 2

Jeopardizes the timeliness of safety-critical chains

Single

executor
Mean Max Min STD

Chain 1 36.865 72.752 0.505 21.223

Chain 2 36.730 73.149 0.773 21.154

< End-to-end latency results [sec] >

O1. Prioritizes timer callbacks regardless of chain priority †

O2. Does not distinguish callbacks by their origin chains

† D. Casini et al. “Response-time analysis of ROS 2 processing chains under reservation-based scheduling”, ECRTS, 2019

Chain 2

Timer callback

Challenges (2/2)

8

III. PiCASII. ROS 2 Background & System Model

▪ Challenge II : Priority assignment for executors

Default ROS2 causes unacceptably

high latency for chain 2

Single

executor
Mean Max Min STD

Chain 1 0.370 0.392 0.366 0.004

Chain 2 48.795 97.783 0.772 28.304

< End-to-end latency results [sec] >

Chain 1

Chain 2

Semantic priority: Chain 1 > Chain 2

O3. High penalty due to self-interference

O4. No guidelines on executor priority assignment

(Chain 1 in a higher-priority executor)

Priority-driven chain-aware scheduling

▪Re-design ROS2 default scheduling architecture

(1) Higher-semantic priority chain executes first (from challenge I)

(2) For each chain, its instances on the same CPU execute in arrival order to prevent

self-interference (from challenge II)

9

III. PiCASIII. Priority-Driven Chain-Aware Scheduling

For Γ𝑐 ≔ [𝜏1, . . , 𝜏𝑖 , … , 𝜏𝑗 , … , 𝜏𝑁] whose

callbacks are on the same CPU, a prior chain

instance is guaranteed to complete, if the

following conditions are met:

 𝝉𝒋 has a higher callback priority than 𝜏𝑖,

 𝝉𝒋 runs on an executor with the same or

higher priority than 𝜏𝑖’s executor.

Lemma 1 𝜏 callback

New chain instance

𝜏2 𝜏3 𝜏4

Prior chain instance

Cannot interfere execution

Wait until completion

𝜏2 𝜏3 𝜏4

Low

priority
High

priority

𝜏1

𝜏1

Scheduling strategies
▪ Strategies for chains running within an executor

▪ Strategies for chains running across executors

10

III. PiCASIII. Priority-Driven Chain-Aware Scheduling

Regular callbacks only Timer and regular callbacks

Single chain
Strategy I. (To satisfy  of Lemma 1) Strategy II. (To satisfy  of Lemma 1)

Multiple

chains

Strategy III. Strategy IV.

High priority chain

Chain 1

Chain 2

Chain 1

Chain 2

Single chain on one CPU Multiple chains on one CPU

Strategy V. (To satisfy  of Lemma 1) Strategy VI.

or

High priority executor

or

Timer callback

Regular callback

𝜏1 𝜏2 𝜏3 𝜏1 𝜏2 𝜏3 𝜏4

Low priority High priority

𝜏1 𝜏2 𝜏3

𝜏1 𝜏2 𝜏3

𝜏1 𝜏2 𝜏3

𝜏1 𝜏2 𝜏3 𝜏4

𝜏1 𝜏2 𝜏1 𝜏2 𝜏3 𝜏1 𝜏3 𝜏1

Priority assignment

11

III. PiCASIII. Priority-Driven Chain-Aware Scheduling

▪Realization of scheduling strategies in two aspects

▪ Callback priority assignment

▪ Chain-aware node allocation algorithm

Chain-aware node allocation
▪ Purpose: minimize interference between chains

(1) allocate given nodes to executors, and then

(2) maps executors to available CPU cores

12

III. PiCASIII. Priority-Driven Chain-Aware Scheduling

Part A. Allocate sorted nodes ℕ
to e𝑒 and 𝑒𝑒 to a feasible CPU

Part B. Allocate sorted nodes ℕ to

feasible e𝑚 when 𝑒𝑒 does not exist

Part C. Handle all leftover nodes that were not

allocated to executors by Part A & B

Examples of chain-aware scheduling

13

IV. Analysis of End-to-end LatencyIII. Priority-Driven Chain-Aware Scheduling

Single

executor
Mean Max Min STD

Chain 1 0.436 0.506 0.368 0.038

Chain 2 1.196 1.738 0.741 0.348

< All callbacks in a single executor >

< One executor per chain >

Executor

per chain
Mean Max Min STD

Chain 1 0.369 0.394 0.366 0.004

Chain 2 1.255 1.731 0.737 0.352

Significantly improved end-to-end latency under PiCAS

▪ With the same workload at page 7.

Analysis of end-to-end latency
▪ Latency analysis in a multi-core system

▪ Segment Φ𝑖: a subset of a chain on one CPU core

▪ Multiple segments if a chain executes over multiple CPU cores

14

V. EvaluationIV. Analysis of End-to-end Latency

< Latency analysis of a chain in a multi-core system >

Step 2: Adding the WCRT of all segments of the chain

End-to-end latency of a chain, 𝐿Γ𝑐

Step 1: Computing the WCRT of each segment of a chain

WCRT of a segment Φ𝑖, R𝑐,𝑖
n 𝑅𝑐,𝑖

𝑛+1 ← 𝐵𝑖 + ෍

∀𝑗:𝜏𝑗∈Φ𝑖

𝐶𝑗 + ෍

∀𝑘:𝜏𝑘∈𝑒 Φ𝑖 ∨
𝜏𝑘∈𝑒𝐻𝑃

𝜂𝑖 𝑅𝑐,𝑖
𝑛 , 𝜏𝑘 × 𝐶𝑘

Interference from higher

semantic priority chains

Execution time of callbacks

for the segment

Blocking time from lower

priority callback

𝐿Γ𝑐 = ෍

Φ𝑖⊂Γ
𝑐

𝑅𝑐,𝑖
𝑛 + 𝑆(Γ𝑐)

Blocking delay by

prior instance

Evaluation
▪ Case studies, schedulability analysis, and analysis running time

▪ Experimental setup for case study

▪ Implemented in the Eloquent Elusor of ROS2 on Ubuntu18.04 on NVIDIA Xavier NX

▪ Comparison of approaches

✓ ROS2 : ROS2 default scheduler with no analysis

✓ ROS2-SD † : ROS2 default scheduler with resource reservation and WCRT analysis

✓ ROS2-PiCAS : proposed scheduler with end-to-end latency
analysis

15

▪ Case study in a multi-core system

✓ Inspired by the indoor self-driving stack of F1/10 vehicle

✓ 6 real-time chains (18 callbacks) and 6 best-efforts chains

in a 4-core system

✓ Low-indexed chains are more critical chains

< Case study >

V. EvaluationV. Evaluation

† D. Casini et al. “Response-time analysis of ROS 2 processing

chains under reservation-based scheduling”, ECRTS, 2019

Case study

16

< End-to-end latency of chains >

< Maximum observed latency vs. analyzed latency >

PiCAS outperforms on

most real-time chains

(e.g., 14ms vs 88ms for

chain 1)

Our latency analysis

provides tighter

upper-bounds for real-

time chains

Schedules chains

while respecting their

semantic priority

V. EvaluationV. Evaluation

Real-time chains Best-effort chains

Schedulability experiments
▪ Workload generation

▪ 1,000 randomly-generated workload sets of callbacks

▪ Utilization from {2.5, 3.0, 3.5} for 4-core environment

▪ 45 callbacks that forms 9 chains (i.e., 5 callbacks per chain)

▪ Chain’s period (deadline) is chosen in the range [50, 1000]

msec

17

Schedulability ratio decreases

as the utilization increase

ROS2-PiCAS outperforms ROS2-SD

for all utilization setups.

ROS2-PiCAS prioritizes chains based on their

semantic priority

VI. ConclusionV. Evaluation

High-priority real-time chains

Conclusion & Future work

▪Conclusion

▪ Proposed a priority-driven chain-aware scheduling and its end-to-end

latency analysis framework

▪ New design of ROS2 scheduling includes scheduling strategies, priority

assignment of callbacks, and chain-aware node allocation

▪ ROS2-PiCAS outperforms the existing ROS2 scheduling w.r.t. the end-to-end

latency under practical scenarios

▪ Future work

▪ Deploy PiCAS to more complex scenario, e.g., autoware.auto (built on ROS2)

18

Q & AVI. Conclusion

Thank you

19

Q & A

PiCAS: New Design of Priority-Driven
Chain-Aware Scheduling for ROS2

▪Hyunjong Choi, Yecheng Xiang, Hyoseung Kim

