RTAS 2021

PICAS: New Design of Priority-Driven
Chain-Aware Scheduling for ROS2

Hyunjong Chol, Yecheng Xiang, Hyoseung Kim

R I V E R s I D E Realtime Entbedded
and Networked Systems
Laboratory

l. Introduction I. Introduction

Robot Operating System (ROS)

= ROS (since 2007)

= Popular open-source middleware in academia and industry ~ se¢ RohttS//1.O/
. . p://r0s.or
» Provides software tools, robot systems, and best-practices ’

» Over the decades, it has revealed shortcomings in real-time support
for timing- and safety-critical applications
Number of ROS Users

ros-users subscribers [ros-users posters [wiki.ros.org users [l wiki.ros.org editors

wers.ros.org users [l answers.ros.org questioners [l answers.ros.org answerers [l rosdistro committers
B rcro committers Discourse users [Discourse posters

40000 .
e

35000 _ﬁ:;&qmﬂ“’”ﬂ’

30000 &

< https://metrics.ros.org/index.html; M
25000 : o
accessed at April 2021> >

20000

15000

10000

Willow Garage PR2
(original ROS robot)

http://willowgarage.com

5000

2009 20m 2013 2015 2017 209 2021

l. Introduction I. Introduction

Why real-time in ROS ?

» To develop safety-critical application with ROS
= Autonomous driving software (e.g., autoware.al)

N Self-driving Unit . ' ~ ~ e ™
) ap Localization . =
Driver Interface —y Planning -
(] Epmnly # 1 Steerin =
; g
Application LiDAR Detection

il
1)

- PR -‘ 1 .

E Camera Prediction Intelligence Acceleration .

m B Gl o o o 1§ |) B | Acccleration]
R . :

Shared memory Autonomous vehicle Shared memory

Sensing Computing Actuation

< Chain in self-driving application >

Hardware

GPU FPGAs

Many/Multi Cores

Timing constraint violations (e.g., end-to-end

< ai>f ' '
Autoware.al latency) can cause catastrophic accidents

TS. Kato et al. “Autoware on Board: Enabling Autonomous Vehicles with Embedded Systems”, ICCPS, 2018
3

l. Introduction I. Introduction

ROS 2 (since 2017)

= Most concepts are inherited from the original ROS design (e.g., pub-sub)
= Aims to improve real-time capability, QoS, and security
= Supports Data Distribution Service (DDS)

-§ [nggﬁcallback}---{callbaek}}{mgqg---]))]]
g » Suffers from priority inversion
T [e) (o) Ardent Apalone,
L released Dec 2017
_ | |Ctient tirary rel Too complex and pessimistic to analyze
§ Middleware library ’W‘
3 Cow)f —— | o
= No systematic resource allocation policy
DDS implementation
[RTI Connext] [OpenSplice } Intra-process API
(cProsima FasT?s » Needs a new RT scheduler for ROS2 !
Eloquent Elusor,
& Anux Vindows released NOV 2019

< ROS2 architecture >

I. Introduction 11. ROS2 Background & System Model

Contributions

= \We propose a new priority-driven chain-aware scheduler for ROS2
In a multi-core environment (PICAS)

= \We develop analysis to upper-bound the end-to-end latency of
chains under the proposed PICAS framework

= We implement PICAS iIn the Eloguent Elusor version of ROS2 on an
embedded platform (NVIDIA Xavier NX)

= PICAS outperforms the default ROS2 scheduler and the latest analysis
work in terms of end-to-end latency

1. ROS 2 Background & System Model

1. ROS2 Background & System Model

Scheduling-related abstractions in ROS2

= Callbacks, nodes, and executors

~ Callback model ———

v Timer / regular callbacks
v" Non-preemptive

v 1= (C;, D;, Ty, m;)

- J

Chain model

(v [€:= [T, Top1)) Tel

v’ 1, : the start callback of I'¢
v T, . the intermediate
callback of I'“
T, . the end callback of I'¢

\\/

~N

Cha

Node \\ CNode \\
TS s L SCT™
Node A
“ | 1| (Node !)
\ Executor j \ Executor j
vigT
[m): :[m): :[m}: :[m]

CPU cores

6

Node model
v N =:i{ny,..,n,..,ny}
v" Not schedulable entities

~ Executor model ———
v & =:{e,, .8, ..., 5}
v Preemptive

v" Schedule with

SCHED FIFO
\ —

1. ROS 2 Background & System Model I11. PICAS

Challenges (1/2)

= Challenge I: Fairness-based scheduling within executors

- "’lh ‘m ‘m ‘m O O E 'm O O
Chainl | = - -- -- = : M _ = _ - _ - _ i
j
- -,-irl ' m ' m ‘'m m " = ! E 'm ¥ om ' m !
T [| [| [| o [[| ||
,{;. n M m = B B n n
chaino | - = = - - o = -
o L] L = L] L = =
=y) L L L L L L
2 | m . om . m L m | . m . m |
- 1%] 2 3 4 5 6 7 8 9 10
Time[sec] B Timer callback ¥ Release timer callbacks

Semantic priority: Chain 1 > Chain 2

— O1. Prioritizes timer callbacks regardless of chain priority
O2. Does not distinguish callbacks by their origin chains

» Jeopardizes the timeliness of safety-critical chains

Chainl : 36.865 72752 : 0.505 21.223
Chain2 : 36730 73149 : 0773 21.154

< End-to-end latency results [sec] >

TD. Casini et al. “Response-time analysis of ROS 2 processing chains under reservation-based scheduling”, ECRTS, 2019

7

1. ROS 2 Background & System Model I11. PICAS

Challenges (2/2)

= Challenge Il : Priority assignment for executors
(Chain 1 in a higher-priority executor)

- 1 " 1 1 1 1 b 1 1 !
Chainl | 7, = = o = C = = = = -
T [| [| (| [| [[| [[| [| |
— _r3_l_ N + m + - + - + - + - + - + - + m ¥ - i
74 L || [[| (I | (I [| [| |
Tg' [C L1 | - /I L
Chain2 | 7, - = n ™ - 0 M -
T D | o [[|
frg. | | [[[[|
_«rlg. . M | . B I | I . | I |}l [}l
0 1 2 3 4 35 6 7 8 9 10
_ o _ _ Time[sec] ¥ Release timer callbacks WM Preempted
Semantic priority: Chain 1 > Chain 2
Single N N T . O3. High penalty due to self-interference
executor L o o O4. No guidelines on executor priority assignment
Chainl : 0.370 0392 : 0.366 0.004
S : Default ROS2 causes unacceptably
Chain2 3 48795 ..o0788 ¢ 07z 28304 high latency for chain 2

< End-to-end latency results [sec] >

I11. Priority-Driven Chain-Aware Scheduling I11. PICAS

Priority-driven chain-aware scheduling

» Re-design ROS2 default scheduling architecture
(1) Higher-semantic priority chain executes first (from challenge I)

(2) For each chain, its instances on the same CPU execute in arrival order to prevent
self-interference (from challenge 11)

Lercnma 1 ~ Prior cwstance callback

ForI'C := [14,.., T}, ..., Tj, ..., Ty] WhOSE — -~

callbacks are on the same CPU, a prior chain [T4 I T, I T4 I T4 l

Instance Is guaranteed to complete, if the J—-— _ _

following conditions are met: Low High ; Wait until completion

® 7; has a higher callback priority than z;, priority priority = New chain instance

@ ; runs on an executor with the same or " — — ~

higher priority than t;’s executor. x Ty (3 T3 Ty
- / Cannot interfere executionY I I I]

I11. Priority-Driven Chain-Aware Scheduling 111. PiCAS

SC h ed u I i n g St rateg i es O Timer callback High priority chain

Regular callback [High priority executor]

= Strategies for chains running within an executor Low priority High priority

Regular callbacks only

Timer and regular callbacks

Strategy Il. (To satisfy ® of Lemma 1)

—»rTHT T T T
Flez Lo Co{ e o v {7]

VIt Strateay 1. (Toy J-(Cea (8) chain1 Strategy IV. (i D={(7a{ 3] Chain 1
ChaInS |l H %) H T3 Chain 2 @—b{ Ty H T3 |—>| Ty ICha|n2

= Strategies for chains running across executors

Strategy I. (To satisfy ©® of Lemma 1)

Single chain T

Single chain on one CPU Multiple chains on one CPU

Strategy V. (To satisfy @ of Lemma 1) Strategy VI.

[[lefz]J o [[Z &) [[rsun]} [][]

> >

10

I11. Priority-Driven Chain-Aware Scheduling

Priority assignment

= Realization of scheduling strategies In two aspects
= Callback priority assignment
» Chain-aware node allocation algorithm

Algorithm 1 Callback priority assignment

Input: I: chains
. I' «— sort in ascending order of semantic priority 7r

l

2
3
4
3:
6
7
8

cp+1

cfor all T €1 do

for all 7, € I'“ do
Ti < P
p+—p+1

end for

- end for

> Initialize current priority

11

1. PICAS

I11. Priority-Driven Chain-Aware Scheduling I11. PICAS

Chain-aware node allocation

= Purpose: minimize interference between chains

Sort nodes 1n descending order of the ighest-pniority
callback that each node includes

(1) allocate given nodes to executors, and then ©)[@[@)[@)--...
N £ O Callback

(2) maps executors to available CPU cores

/ n is a node that contains the
I
/ lowest-pnonty callback from N

..
-,

Part A. Allocate sorted nodes N
to e, and e, to a feasible CPU

ind all CPUs Py
where U, + Up, =1

Part B. Allocate sorted nodes N to
feasible e,,, when e, does not exist

Part C. Handle all leftover nodes that were not
allocated to executors by Part A & B i
. Pamamelers B e

N Nodes e, Non-empty executors
N Anode set consists of callbacks of a chain T'“ (Uy <1) M The number of e, ; Merge all N goes to the lowest
e, Empty executor P The number of P, H executors in Py as (& utilization Py
L ! a single executor
Up, Utilization of CPU core P, E B :
n A node that has the IOWCSt priority Callback of [‘C in N O *

12

I11. Priority-Driven Chain-Aware Scheduling

Examples of chain-aware scheduling

= With the same workload at page 7.

T L *- *- ¥ [| ¥ [| | | ‘ ‘- *- l‘-

’Té = = = = = = = = = =

:3 - -. , = s m " = , = o m 4 = , = oo = e m

L = ™ = m = m m

72 . = = = = = = -

SL m = = m = = =
AL ™ = m ™ m = ™
. = = m - ™ = -
T 9 | | | | | | | m | || [| | [|
1% 1 2 3 4 5 6 7 8 9 10

Time[sec] ¥ Release timer callbacks

< All callbacks in a single executor >

' = 1 1 1 1 = = 1N W i

T; ' m m = = = m = = m =

:3 v -. , = s m m , = o = 4 m , = o = _ m

AL ™~ ™ = [~ — ™ —

= = — = r o = =

SL - = = — = — =

7L — = = = = = =

2l = ™ — = — = ™
21 m = . m - = | m u

% 1 2 3 4 6 7 8 9 10

Time[sec] <+ Release timer callbacks B Preempted

< One executor per chain >

Single

executor
Chain 1

Mean

0.436

Executor .

per chain :

Chain 1
Chain 2

Mean

: 0.369
: 1.255

IV. Analysis of End-to-end Latency

Max

0.506
1.738

0.394
1.731

» Significantly improved end-to-end latency under PICAS

Min

0.368
0.741

0.366
0.737

STD

0.038
0.348

STD

0.004
0.352

13

V. Analysis of End-to-end Latency V. Evaluation

Analysis of end-to-end latency

= Latency analysis in a multi-core system
= Segment ®;: a subset of a chain on one CPU core
= Multiple segments if a chain executes over multiple CPU cores

Execution time of callbacks
for tthe segment

Step 1: Computing the WCRT of each segment of a chain (YT Y N
|
WCRT of a segment ®@;, R2; R} <—i B; :LFE Z Cji"‘i Z n:(RE: i) X Cki
! E | V)T jED; E in:TkEe(CDi)V E
' |_‘_J A ’ _Ek_E_e_Hf_‘__________ _____ ’
Blocking time from lower Interference from higher
Step 2: Adding the WCRT of all segments of the chain priority callback semantic priority chains

End-to-end latency of a chain, Lpc

LFC — Z R(,T'I;l +ES(FC)I
< Latency analysis of a chain in a multi-core system > doate e !
Blocking delay by

prior instance

14

Evaluation

= Case studies, schedulability analysis, and analysis running time

= Experimental setup for case study
» Implemented in the Eloguent Elusor of ROS2 on Ubuntul8.04 on NVIDIA Xavier NX
= Comparison of approaches
v ROS2 : ROS2 default scheduler with no analysis
v ROS2-SD T : ROS2 default scheduler with resource reservation and WCRT analysis

..............................

v ROS2-PICAS : proposed scheduler with end-to-end latency gjgi,;::ﬁ. e
anaIySIS E =16 Imsec : GlobalJ)lanner
. . :--n::---b| global costmap |
= Case study in a multi-core system P, Losel plonne
v" Inspired by the indoor self-driving stack of F1/10 vehicle % - ._:l_}i‘ié?_____-_:'.l.‘i‘:i'l_ff’ffi?f‘?_f _____ i%(’.‘i?%f}i'i{l_.
v’ 6 real-time chains (18 callbacks) and 6 best-efforts chains =2 CNTRAD-»{ o procesins [cbjet dottion | Y et
in a 4-C0re S Stem 11 C=17.9m T12 C=6.6msec | object. TTﬂCleQ
. y . L . g:%og:,j:;- -bldepth estunat1011|- ->| traffic_prediction |
‘/ LOW-Indexed Chalns are more Crltlcal Chalns = Tlgt:nerati Lj(j)l?ot Eiuact rogoto ii::)éclcel ;Zcorfizijl:g:c
C;J-Ff’:wec @nb joint_state g (URDEF) "> state_data
O Timer callback(T:period, C:execution time) flhii;n[il_rgz] F: =:[110, 711, T12]
¥ D. Casini et al. “Response-time analysis of ROS 2 processing [Regular callback ===p Data dependency s j{i;;i;j;;;j ol {g;;jgfﬂ'%]
chains under reservation-based scheduling”, ECRTS, 2019 < Case study >

15

Case study

.
o
IS

. i [IROS2
F350|- - [IROS2-SD
E300 o [JROS2-PiCAS
gaso- o PiCAS outperforms on
S 2008 s L oy most real-time chains
5150 o . ; ' . o 8 (e.g., 14ms vs 88ms for
$ 100-° 3 P é e ; i) ﬁ I l ﬁ _;_ + ‘o % chain 1)
ﬁﬁo—ggj Leg .2 Léﬁ+ s ladoddls 50 E L8

0 — [| o | | = | | | | | | |

Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6 BE1 BE2 BE3 BE4 BES BE6
‘III- lll > -
Real-time chains Best-effort chains hS_::heduIes c_:halnhs :
< End-to-end latency of chains > while respecting their
semantic prlorlty
400 }-ROSZ-SD (max observed) ligol 10243 177 941
—_ B ROS2-PiCAS (max observed) 373.
3 [JROS2-SD (analysis)
& 300 | {EEROS2-PiCAS (analysis) 2921 301)
- 2662 225 riss N Our latency analysis
2 228.6] . .
EEEOO | (] 2012 201 — pr0V|deS t|ghter
E 1466 = 18— - upper-bounds for real-
-E 100 882 = | rse [} time chains
LE 21 14 2 ad pol 7.9
18.3
° Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6 BE1 BE2 BEE BE4 BES BE6

< Maximum observed latency vs. analyzed latency >
16

Schedulability experiments

High-priority real-time chains

= Workload generation I N I |
Eoff oz 2
= 1,000 randomly-generated workload sets of callbacks 20dl e Smos: meas
= Utilization from {2.5, 3.0, 3.5} for 4-core environment ézj :
= 45 callbacks that forms 9 chains (i.e., 5 callbacks per chain) “ ammlmm{mﬁscm?“h?ms s o o ens
. t t .
* Chain’s period (deadline) is chosen in the range [50, 1000] ... e,
msecC e ir r : : x . 0.968 0955
godr 0.68 T
%U.é— £ 036
Schedulability ratio decreases « gzj =
as the utilization increase 2l O LN FE G S | _ N
* Chanl Cham?2 Cham3 Cham4 2Chain5 Chan6 Chan7 Chan8 Chan?9
......................... S e b

ROS2-PiCAS outperforms ROS2-SD

- . - i
for all utilization setups. £ 0il
50-5‘ : f:-.55~5
ROS2-PiCAS prioritizes chains based on their « 2o HI I =
- - . S01r (RER] O
Semanth prlOrlty A a 0.01 0.02. 0.060 . m

* Chaml Cham2 Cham3 Cham4 :2Chan5 Chané Cham7 Chan8 Cham?9

o 1] 1 1 e

0.1 ROS2-SD
ROS2-PiCAS|

17

V1. Conclusion

Conclusion & Future work

= Conclusion

» Proposed a priority-driven chain-aware scheduling and its end-to-end
latency analysis framework

* New design of ROS2 scheduling includes scheduling strategies, priority
assignment of callbacks, and chain-aware node allocation

» ROS2-PICAS outperforms the existing ROS2 scheduling w.r.t. the end-to-end
latency under practical scenarios

» Future work
* Deploy PICAS to more complex scenario, e.g., autoware.auto (built on ROS2)

18

Thank you

PICAS: New Design of Priority-Driven
Chain-Aware Scheduling for ROS2

= Hyunjong Chol, Yecheng Xiang, Hyoseung Kim

Q&A

